ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Дан выпуклый шестиугольник P1P2P3P4P5P6, все стороны которого равны. Каждую его вершину отразили симметрично относительно прямой, проходящей через две соседние вершины. Полученные точки обозначили через Q1, Q2, Q3, Q4, Q5 и Q6 соответственно. Докажите, что треугольники Q1Q3Q5 и Q2Q4Q6 равны.

Вниз   Решение


Среди 18 деталей, выставленных в ряд, какие-то три подряд стоящие весят по 99 г, а все остальные – по 100 г. Двумя взвешиваниями на весах со стрелкой определите все 99-граммовые детали.

ВверхВниз   Решение


Докажите неравенство Коши для пяти чисел, то есть докажите, что при   a, b, c , d e ≥ 0 имеет место неравенство

ВверхВниз   Решение


а) Докажите, что расстояния от любой точки параболы до фокуса и до директрисы равны.
б) Докажите, что множество точек, для которых расстояния до некоторой фиксированной точки и до некоторой фиксированной прямой равны, является параболой.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 84]      



Задача 58498  (#31.031)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

Две параболы, оси которых перпендикулярны, пересекаются в четырех точках. Докажите, что эти точки лежат на одной окружности.
Прислать комментарий     Решение


Задача 58499  (#31.032)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

Докажите, что середины параллельных хорд параболы лежат на одной прямой, параллельной оси параболы.
Прислать комментарий     Решение


Задача 58500  (#31.033)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

а) Докажите, что расстояния от любой точки параболы до фокуса и до директрисы равны.
б) Докажите, что множество точек, для которых расстояния до некоторой фиксированной точки и до некоторой фиксированной прямой равны, является параболой.
Прислать комментарий     Решение


Задача 58501  (#31.034)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

Докажите, что пучок лучей света, параллельных оси параболы, после отражения от параболы сходится в ее фокусе.
Прислать комментарий     Решение


Задача 58502  (#31.035)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

Докажите, что касательные к параболе 4y = x2 в точках (2t1, t21) и (2t2, t22) пересекаются в точке (t1 + t2, t1, t2).
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 84]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .