Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Разложите на простые множители числа 111, 1111, 11111, 111111, 1111111.

Вниз   Решение


Существуют ли  а) 5,  б) 6 простых чисел, образующих арифметическую прогрессию?

ВверхВниз   Решение


Предположим, что нашлись 15 простых чисел, образующих арифметическую прогрессию с разностью d. Докажите, что  d > 30000.

ВверхВниз   Решение


При каких целых n число  n4 + 4  – составное?

ВверхВниз   Решение


Существует ли такой многочлен P(x), что у него есть отрицательный коэффициент, а все коэффициенты любой его степени (P(x))n,  n > 1,  положительны?

ВверхВниз   Решение


x ≥ –1, n – натуральное число. Докажите, что   (1 + x)n ≥ 1 + nx.

ВверхВниз   Решение


Докажите неравенство для натуральных n:  

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



Задача 60301  (#01.028)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 8,9,10

Докажите неравенство для натуральных n:  

Прислать комментарий     Решение


Задача 60302  (#01.029)

Темы:   [ Иррациональные неравенства ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 8,9,10

Докажите неравенство для натуральных n:  

Прислать комментарий     Решение

Задача 60303  (#01.030)

Темы:   [ Индукция (прочее) ]
[ Произведения и факториалы ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3-
Классы: 8,9,10

Докажите неравенство для натуральных  n > 1:  

Прислать комментарий     Решение

Задача 60304  (#01.031)

Темы:   [ Индукция (прочее) ]
[ Алгебраические неравенства (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 2+
Классы: 8,9,10

Докажите неравенство для натуральных  n > 1:  

Прислать комментарий     Решение

Задача 30899  (#01.032)

 [Неравенство Бернулли]
Темы:   [ Классические неравенства (прочее) ]
[ Индукция (прочее) ]
Сложность: 3
Классы: 7,8,9

x ≥ –1, n – натуральное число. Докажите, что   (1 + x)n ≥ 1 + nx.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .