Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

а) Докажите, что число точек пересечения двух замкнутых ломаных на плоскости, находящихся в общем положении, чётно.
б) Верно ли это для замкнутых ломаных, нарисованных на поверхности оконной рамы?

Вниз   Решение


Решить в целых числах уравнение   xy/z + xz/y + yz/x = 3.

ВверхВниз   Решение


Докажите, что для любого выпуклого многогранника имеет место соотношение

B - P + Г = 2,

где B — число его вершин, P — число ребер, Г — число граней.

ВверхВниз   Решение


За круглым столом сидят n человек. Разрешается любых двух людей, сидящих рядом, поменять местами. Какое наименьшее число таких перестановок необходимо сделать, чтобы в результате каждые два соседа остались бы соседями, но сидели бы в обратном порядке?

ВверхВниз   Решение


Докажите, что если  a1 = a2  и  b1 = b2  (см. рис.), то  x = y.

ВверхВниз   Решение


Труппа театра состоит из 20 артистов. Сколькими способами можно выбрать из неё в течение двух вечеров по шесть человек для участия в спектаклях так, чтобы ни один артист не участвовал в двух спектаклях?

ВверхВниз   Решение


Сколько существует (невырожденных) треугольников периметра 100 с целыми длинами сторон?

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 [Всего задач: 59]      



Задача 60331  (#01.058)

 [Теорема Эйлера]
Темы:   [ Эйлерова характеристика ]
[ Формула Эйлера. Эйлерова характеристика ]
[ Индукция в геометрии ]
Сложность: 5
Классы: 10,11

Докажите, что для любого выпуклого многогранника имеет место соотношение

B - P + Г = 2,

где B — число его вершин, P — число ребер, Г — число граней.

Прислать комментарий     Решение

Задача 60332  (#01.059)

 [Задача Сильвестра]
Тема:   [ Выпуклые многоугольники ]
Сложность: 3
Классы: 9,10

На плоскости взяты несколько точек так, что на каждой прямой, соединяющей любые две из них, лежит по крайней мере еще одна точка. Докажите, что все точки лежат на одной прямой.

Прислать комментарий     Решение

Задача 60333  (#01.060)

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Индукция в геометрии ]
[ Выпуклые многоугольники ]
Сложность: 3
Классы: 8,9,10

Выпуклая оболочка. Докажите, что для любого числа точек плоскости найдется выпуклый многоугольник с вершинами в некоторых из них, содержащий внутри себя все остальные точки.

Прислать комментарий     Решение

Задача 60334  (#01.061)

Темы:   [ Уравнения в целых числах ]
[ Алгебраические задачи на неравенство треугольника ]
Сложность: 3
Классы: 8,9,10

Сколько существует (невырожденных) треугольников периметра 100 с целыми длинами сторон?

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 [Всего задач: 59]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .