Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Все попарные расстояния между четырьмя точками в пространстве равны 1. Найдите расстояние от одной из этих точек до плоскости, определяемой тремя другими.

Вниз   Решение


Отрезки AM и BH – соответственно медиана и высота остроугольного треугольника ABC. Известно, что  AH = 1  и  2∠MAC = ∠MCA.  Найдите сторону BC.

ВверхВниз   Решение


Докажите, что из любого конечного множества точек на плоскости можно так удалить одну точку, что оставшееся множество можно разбить на две части меньшего диаметра. (Диаметр – это максимальное расстояние между точками множества.)

ВверхВниз   Решение


Хорда AB разбивает окружность S на две дуги. Окружность S1 касается хорды AB в точке M и одной из дуг в точке N . Докажите, что а) прямая MN проходит через середину P второй дуги; б) длина касательной PQ к окружности S1 равна PA .

ВверхВниз   Решение


В спортклубе тренируются 100 толстяков весом от 1 до 100 кг. На какое наименьшее число команд их можно разделить так, чтобы ни в одной команде не было двух толстяков, один из которых весит вдвое больше другого?

ВверхВниз   Решение


Точка M находится на расстояниях 5 и 4 от двух параллельных прямых m и n и на расстоянии 3 от плоскости, проходящей через эти прямые. Найдите расстояние между прямыми m и n .

ВверхВниз   Решение


Bыпуклый n-угольник P, где  n > 3,  разрезан на равные треугольники диагоналями, не пересекающимися внутри него.
Каковы возможные значения n, если n-угольник вписанный?

ВверхВниз   Решение


Имеется две кучки по 11 спичек. За ход можно взять две спички из одной кучки и одну из другой. Проигрывает тот, кто не может сделать ход.

ВверхВниз   Решение


Игра начинается с числа 0. За ход разрешается прибавить к имеющемуся числу любое натуральное число от 1 до 9. Выигрывает тот, кто получит число 100.

ВверхВниз   Решение


Найдите все простые числа, которые равны сумме двух простых чисел и разности двух простых чисел.

ВверхВниз   Решение


Существуют ли арифметическая прогрессия, состоящая лишь из простых чисел?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



Задача 60463  (#03.011)

Тема:   [ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2-
Классы: 5,6,7

Разложите на простые множители числа 111, 1111, 11111, 111111, 1111111.

Прислать комментарий     Решение

Задача 60464  (#03.012)

Темы:   [ Делимость чисел. Общие свойства ]
[ Произведения и факториалы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 6,7,8

Докажите, что существуют 1000 подряд идущих составных чисел.

Прислать комментарий     Решение

Задача 60465  (#03.013)

Темы:   [ Делимость чисел. Общие свойства ]
[ Простые числа и их свойства ]
[ Произведения и факториалы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 6,7,8

Докажите, что для любого натурального n найдутся n подряд идущих натуральных чисел, среди которых ровно одно простое.

Прислать комментарий     Решение

Задача 60466  (#03.014)

Темы:   [ Простые числа и их свойства ]
[ Арифметическая прогрессия ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9

Существуют ли  а) 5,  б) 6 простых чисел, образующих арифметическую прогрессию?

Прислать комментарий     Решение

Задача 60467  (#03.015)

Темы:   [ Простые числа и их свойства ]
[ Арифметическая прогрессия ]
Сложность: 3-
Классы: 8,9

Существуют ли арифметическая прогрессия, состоящая лишь из простых чисел?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .