ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Чему равны числа Фибоначчи с отрицательными
номерами F-1, F-2, ..., F-n,...?
При помощи формулы Лежандра (см. задачу 60553) докажите, что число Может ли вершина параболы у = 4х² – 4(а + 1)х + а лежать во второй координатной четверти при каком-нибудь значении а? Найдите радиусы вписанной и описанной окружностей треугольника со сторонами 13, 13, 24 и расстояние между центрами этих окружностей. Даны положительные рациональные числа a, b. Один из корней трёхчлена x² – ax + b – рациональное число, в несократимой записи имеющее вид m/n. Докажите, что знаменатель хотя бы одного из чисел a и b (в несократимой записи) не меньше n2/3.
Докажите следующие свойства чисел Фибоначчи:
Четырехугольник ABCD описан около окружности. Биссектрисы внешних углов A и B пересекаются в точке K , внешних углов B и C – в точке L , внешних углов C и D – в точке M , внешних углов D и A – в точке N . Пусть K1 , L1 , M1 , N1 – точки пересечения высот треугольников ABK , BCL , CDM , DAN соответственно. Докажите, что четырехугольник K1L1M1N1 – параллелограмм. Пусть p – простое число и представление числа n
в p-ичной системе имеет вид: n = akpk + ak–1pk–1 + ... + a1p1 + a0. Докажите, что число p входит в разложение n! с показателем, не превосходящим Точка P перемещается по описанной окружности
квадрата ABCD. Прямые AP и BD пересекаются в точке Q, а прямая,
проходящая через точку Q параллельно AC, пересекает прямую BP в
точке X. Найдите ГМТ X.
Докажите, что изодинамические центры лежат на прямой KO, где O — центр
описанной окружности, K — точка Лемуана.
Существует ли такое целое число r, что Пусть a, b, c, d, e и f – некоторые числа, причём ace ≠ 0. Известно, что значения выражений |ax + b| + |cx + d| и |ex + f | равны при всех значениях x. Тождество Кассини. Докажите равенство
Fn + 1Fn - 1 - Fn2 = (- 1)n (n > 0).
Будет ли тождество Кассини справедливо для всех целых n? Даны натуральное число n > 3 и положительные числа x1, x2, ..., xn, произведение которых равно 1. Треугольник ABC правильный, M — некоторая точка.
Докажите, что если числа AM, BM и CM образуют геометрическую
прогрессию, то знаменатель этой прогрессии меньше 2.
Докажите равенства
Даны радиусы r и R двух непересекающихся окружностей. Oбщие внутренние касательные этих окружностей перпендикулярны.
Вычислите
Fn + 24 - FnFn + 1Fn + 3Fn + 4.
В неравнобедреном треугольнике ABC точка I – центр вписанной окружности, I' – центр окружности, касающейся стороны AB и продолжений сторон CB и CA; L и L' – точки, в которых сторона AB касается этих окружностей. Основания описанной трапеции равны 2 и 11. Докажите, что продолжения боковых сторон трапеции пересекаются под острым углом. Верно ли, что центр вписанной окружности треугольника лежит внутри треугольника, образованного средними линиями данного? На столе стоят 2004 коробочки, в каждой из которых лежит по одному шарику. Известно, что некоторые из шариков– белые, и их количество четно. Разрешается указать на любые две коробочки и спросить, есть ли в них хотя бы один белый шарик. За какое наименьшее количество вопросов можно гарантированно определить какие-нибудь две коробочки, в которых лежат белые шарики? На окружности фиксированы точки A и B, а точка C
перемещается по этой окружности. Найдите множество точек пересечения:
а) высот; б) биссектрис треугольников ABC.
О том, как прыгают
кузнечики. Предположим, что имеется лента, разбитая на клетки и
уходящая вправо до бесконечности. На первой клетке этой ленты
сидит кузнечик. Из любой клетки кузнечик может перепрыгнуть либо
на одну, либо на две клетки вправо. Сколькими способами кузнечик
может добраться до n-ой от начала ленты клетки?
|
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 173]
Существует ли такое целое число r, что
Некто приобрел
пару кроликов и поместил их в огороженный со всех сторон загон.
Сколько кроликов будет через год, если считать, что каждый месяц
пара дает в качестве приплода новую пару кроликов, которые со
второго месяца жизни также начинают приносить приплод?
О том, как прыгают
кузнечики. Предположим, что имеется лента, разбитая на клетки и
уходящая вправо до бесконечности. На первой клетке этой ленты
сидит кузнечик. Из любой клетки кузнечик может перепрыгнуть либо
на одну, либо на две клетки вправо. Сколькими способами кузнечик
может добраться до n-ой от начала ленты клетки?
Некоторый алфавит состоит из 6 букв, которые для передачи по телеграфу кодированы так:
. - . . - - . - - .
При передаче одного слова не сделали промежутков, отделяющих
букву от буквы, так что получилась сплошная цепочка из точек и
тире, содержащая 12 знаков. Сколькими способами можно прочитать
переданное слово?
Чему равны числа Фибоначчи с отрицательными
номерами F-1, F-2, ..., F-n,...?
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 173]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке