Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

На боковых сторонах AB и AC равнобедренного треугольника ABC отмечены точки P и Q так, что  ∠PXB = ∠QXC,  где X – середина основания BC.
Докажите, что  BQ = CP.

Вниз   Решение


Две окружности касаются внешним образом. Прямая, проведённая через точку касания, образует в окружностях хорды, одна из которых равна 13/5 другой. Найдите радиусы окружностей, если расстояние между центрами равно 36.

ВверхВниз   Решение


В равнобедренном треугольнике ABC сторона  AC = b,  стороны  BA = BC = aAM и CN – биссектрисы углов A и C. Найдите MN.

ВверхВниз   Решение


Докажите, что значение любой периодической цепной дроби – квадратичная иррациональность.

ВверхВниз   Решение


Автор: Фольклор

Шахматист сыграл в турнире 20 партий и набрал 12,5 очков. На сколько партий больше он выиграл, чем проиграл?

ВверхВниз   Решение


Пусть O – центр правильного треугольника ABC. Из произвольной точки P плоскости опустили перпендикуляры на стороны треугольника или их продолжения. Обозначим через M точку пересечения медиан треугольника с вершинами в основаниях этих перпендикуляров. Докажите, что M – середина отрезка PO.

ВверхВниз   Решение


Используя в качестве чисел любое количество монет достоинством 1, 2, 5 и 10 рублей, а также (бесплатные) скобки и знаки четырех арифметических действий, составьте выражение со значением 2009, потратив как можно меньше денег.

ВверхВниз   Решение


Фабрика игрушек выпускает проволочные кубики, в вершинах которых расположены маленькие разноцветные шарики. По ГОСТу в каждом кубике должны быть использованы шарики всех восьми цветов (белого и семи цветов радуги). Сколько разных моделей кубиков может выпускать фабрика?

ВверхВниз   Решение


AD – биссектриса треугольника ABC. Точка M лежит на стороне AB, причём  AM = MD.  Докажите, что  MD || AC.

ВверхВниз   Решение


Пусть     Чему равны Pn и Qn?

Вверх   Решение

Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 173]      



Задача 60594  (#03.142)

Темы:   [ Рекуррентные соотношения (прочее) ]
[ НОД и НОК. Взаимная простота ]
[ Уравнения в целых числах ]
Сложность: 4
Классы: 9,10,11

Пусть a1, a2, ... – такая последовательность ненулевых чисел, что  (am, an) = a(m, n)  (m, n ≥ 1).

Докажите, что все обобщенные биномиальные коэффициенты     являются целыми числами.

Прислать комментарий     Решение

Задача 60595  (#03.143)

Тема:   [ Цепные (непрерывные) дроби ]
Сложность: 2+
Классы: 8,9,10,11

Разложите в цепные дроби числа 147/13 и 129/111.

Прислать комментарий     Решение

Задача 60596  (#03.144)

Темы:   [ Цепные (непрерывные) дроби ]
[ Числа Фибоначчи ]
Сложность: 3
Классы: 8,9,10,11

Пусть     Чему равны Pn и Qn?

Прислать комментарий     Решение

Задача 60597  (#03.145)

Темы:   [ Цепные (непрерывные) дроби ]
[ Алгоритм Евклида ]
Сложность: 3
Классы: 8,9,10,11

Как связано разложение рационального числа в цепную дробь с алгоритмом Евклида?

Прислать комментарий     Решение

Задача 60598  (#03.146)

 [Геометрическая интерпретация алгоритма Евклида]
Темы:   [ Цепные (непрерывные) дроби ]
[ Разрезания на параллелограммы ]
Сложность: 3
Классы: 8,9,10,11

Работу алгоритма Евклида (см. задачу 60488) можно представить следующим образом. В прямоугольник размерами  m0×m1  (m1m0)  укладываем a0 квадратов размера   m1×m1,  в оставшийся прямоугольник размерами  m1×m2  (m2m1)  укладываем a1 квадратов размера  m2×m2,  и т. д. до тех пор, пока весь прямоугольник не покроется квадратами. Выразите общее число квадратов через элементы цепной дроби числа  m0/m1.

Прислать комментарий     Решение

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 173]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .