ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Лягушка прыгает по вершинам треугольника ABC, перемещаясь каждый раз в одну из соседних вершин.
Пусть характеристическое
уравнение (11.3
) последовательности (11.2)
имеет комплексные корни
x1, 2 = a±ib = re±i
an = rn(c1cos n
Докажите, что если ∠BAC = 2∠ABC, то BC² = (AC + AB)·AC. На неравных сторонах AB и AC треугольника ABC
внешним образом построены равнобедренные треугольники AC1B и AB1C с углом φ при вершине. Продолжения боковых сторон трапеции с основаниями AD и BC пересекаются в точке O. Концы отрезка EF, параллельного основаниям и проходящего через точку пересечения диагоналей, лежат соответственно на сторонах AB и CD. Докажите, что AE : CF = AO : CO.
Садовник, привив черенок редкого растения,
оставляет его расти два года, а затем ежегодно берет от него по
6 черенков. С каждым новым черенком он поступает аналогично.
Сколько будет растений и черенков на n-ом году роста
первоначального растения?
Шестиугольник ABCDEF вписан в окружность радиуса R с центром O, причём AB = CD = EF = R. Докажите, что точки попарного пересечения описанных окружностей треугольников BOC, DOE и FOA, отличные от точки O, являются вершинами правильного треугольника со стороной R. На сторонах выпуклого четырёхугольника ABCD внешним образом построены подобные ромбы, причём их острые углы α прилегают к вершинам A и C. Докажите, что отрезки, соединяющие центры противоположных ромбов, равны, а угол между ними равен α. Определим последовательности {xn} и {yn} при помощи условий:
xn = xn - 1 + 2yn - 1sin2
Найдите выражение для xn и yn через n и В плоскости расположено 11 шестерёнок таким образом, что первая сцеплена со второй, вторая – с третьей, ..., одиннадцатая – с первой. Произведение 22 целых чисел равно 1. Докажите, что их сумма не равна нулю. Из набора домино выбросили все кости с шестёрками. Можно ли оставшиеся кости выложить в ряд? Найти наибольшее значение, которое может принимать выражение aek – afh + bfg – bdk + cdh – ceg, если каждое из чисел a, b, c, d, e, f, g, h, k равно ±1.
Докажите, что для любого числа p > 2 найдется
такое число |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]
Лягушка прыгает по вершинам треугольника ABC, перемещаясь каждый раз в одну из соседних вершин.
Лягушка прыгает по вершинам шестиугольника ABCDEF, каждый раз перемещаясь в одну из соседних вершин.
Докажите, что для любого числа p > 2 найдется
такое число
Садовник, привив черенок редкого растения,
оставляет его расти два года, а затем ежегодно берет от него по
6 черенков. С каждым новым черенком он поступает аналогично.
Сколько будет растений и черенков на n-ом году роста
первоначального растения?
Найдите у чисел а) (6 +
Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке