Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 17 задач
Версия для печати
Убрать все задачи

Автор: Уткин А.

В треугольнике $ABC$ $AL_a$, $BL_b$, $CL_c$ – биссектрисы, $K_a$ – точка пересечения касательных к описанной окружности в вершинах $B$ и $C$; $K_b$, $K_c$ определены аналогично. Докажите, что прямые $K_aL_a$, $K_bL_b$ и $K_cL_c$ пересекаются в одной точке.

Вниз   Решение


Дано уравнение  xn – a1xn–1a2xn–2 – ... – an–1x – an = 0,  где  a1 ≥ 0,  a2 ≥ 0,  an ≥ 0.
Доказать, что это уравнение не может иметь двух положительных корней.

ВверхВниз   Решение


Четырехугольник $ABCD$ описан вокруг окружности радиуса $R$. Пусть $h_1$ и $h_2$ – высоты опущенные из точки $A$ на стороны $BC$ и $CD$ соответственно. Аналогично $h_3$ и $h_4$ – высоты опущенные из точки $C$ на стороны $AB$ и $AD$. Докажите, что $$ \frac{h_1+h_2-2R}{h_1h_2}=\frac{h_3+h_4-2R}{h_3h_4}. $$

ВверхВниз   Решение


Предположим, что у нас имеется 1000000 автобусных билетов с номерами от 000000 до 999999. Будем называть билет счастливым, если сумма первых трёх цифр его номера равна сумме трёх последних. Пусть N – количество счастливых билетов. Докажите равенства:
  а)  (1 + x + ... + x9)3(1 + x–1 + ... + x–9)3 = x27 + ... + a1x + N + a1x + ... + x–27;
  б)  (1 + x + ... + x9)6 = 1 + ... + Nx27 + ... + x54.
  в) Найдите число счастливых билетов.

ВверхВниз   Решение


Вычислите суммы:
  а)  

  б)  

ВверхВниз   Решение


Точка O, лежащая внутри выпуклого четырёхугольника площади S, отражается симметрично относительно середин его сторон.
Найдите площадь четырёхугольника с вершинами в полученных точках.

ВверхВниз   Решение


Сторона AD прямоугольника ABCD в три раза больше стороны AB. Точки M и N делят AD на три равные части. Найдите  ∠AMB + ∠ANB + ∠ADB.

ВверхВниз   Решение


Докажите, что из равенства  P(x) = Q(x)T(x) + R(x)  следует соотношение  (P(x), Q(x)) = (Q(x), R(x)).

ВверхВниз   Решение


Пусть точка $P$ лежит на описанной окружности треугольника $ABC$. Точка $A_1$ симметрична ортоцентру треугольника $PBC$ относительно серединного перпендикуляра к $BC$. Точки $B_1$ и $C_1$ определяются аналогично. Докажите, что точки $A_1$, $B_1$ и $C_1$ лежат на одной прямой.

ВверхВниз   Решение


Четырехугольник $ABCD$, вписанный в окружность $\omega$, таков что $AD=BD=AC$. Точка $P$ движется по $\omega$. Прямые $AP$ и $DP$ пересекают прямые $CD$ и $AB$ в точках $E$ и $F$ соответственно. Прямые $BE$ и $CF$ пересекаются в точке $Q$. Найдите геометрическое место точек $Q$.

ВверхВниз   Решение


Укажите явный вид коэффициентов в многочленах Fn(x) и Ln(x). Решите задачи 60581 и 60582, используя многочлены Фибоначчи.
Про многочлены Фибоначчи и Люка смотри статьи в справочнике.

ВверхВниз   Решение


В треугольнике $ABC$ $AH_1$ и $BH_2$ – высоты; касательная к описанной окружности в точке $A$ пересекает $BC$ в точке $S_1$, а касательная в точке $B$ пересекает $AC$ в точке $S_2$; $T_1$ и $T_2$ – середины отрезков $AS_1$ и $BS_2$. Докажите, что $T_1T_2$, $AB$ и $H_1H_2$ пересекаются в одной точке.

ВверхВниз   Решение


Вычислите несколько первых многочленов Фибоначчи и Люка (определения многочленов Фибоначчи и Люка смотри здесь). Какие значения эти многочлены принимают при x = 1? Докажите, что многочлены Люка связаны с многочлены Фибоначчи соотношениями:
  а)  Ln(x) = Fn–1(x) + Fn+1(x)  (n ≥ 1);
  б)  Fn(x)(x² + 4) = Ln–1(x) + Ln+1(x)  (n ≥ 1);
  в)  F2n(x) = Ln(x)Fn(x)  (n ≥ 0);
  г)  (Ln(x))² + (Ln+1(x))² = (x² + 4)F2n+1(x)  (n ≥ 0);
  д)  Fn+2(x) + Fn–2(x) = (x² + 2)Fn(x).

ВверхВниз   Решение


В шестиугольнике $A_1A_2A_3A_4A_5A_6$ никакие четыре вершины не лежат на одной окружности, а диагонали $A_1A_4$, $A_2A_5$ и $A_3A_6$ пересекаются в одной точке. Обозначим через $l_i$ радикальную ось окружностей $A_iA_{i+1}A_{i-2}$ и $A_iA_{i-1}A_{i+2}$ (мы считаем, что точки $A_i$ и $A_{i+6}$ совпадают). Докажите, что прямые $l_i$, $i=1,\ldots,6$, пересекаются в одной точке.

ВверхВниз   Решение


Вычислите:

а) (1 + x)-1;     б) (1 - x)-1;    в) (1 - x)-2.

ВверхВниз   Решение


Докажите, что при  x ≥ 0  имеет место неравенство  

ВверхВниз   Решение


Докажите, что бесконечная сумма

  0, 1
+ 0, 01
+ 0, 002
+ 0, 0003
+ 0, 00005
+ 0, 000008
+ 0, 0000013
  ...

сходится к рациональному числу.

Вверх   Решение

Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 100]      



Задача 61498  (#11.71-72)

Темы:   [ Производящие функции ]
[ Треугольник Паскаля и бином Ньютона ]
[ Классическая комбинаторика (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Предположим, что у нас имеется 1000000 автобусных билетов с номерами от 000000 до 999999. Будем называть билет счастливым, если сумма первых трёх цифр его номера равна сумме трёх последних. Пусть N – количество счастливых билетов. Докажите равенства:
  а)  (1 + x + ... + x9)3(1 + x–1 + ... + x–9)3 = x27 + ... + a1x + N + a1x + ... + x–27;
  б)  (1 + x + ... + x9)6 = 1 + ... + Nx27 + ... + x54.
  в) Найдите число счастливых билетов.

Прислать комментарий     Решение

Задача 61500  (#11.073)

Тема:   [ Формальные степенные ряды ]
Сложность: 3+
Классы: 10,11

Назовем экспонентой следующий степенной ряд: Exp(z)=1+z+z2/2!+...+zn/n!+...
Докажите следующие свойства экспоненты:
а) Exp$ \nolimits{^\prime}$(z) = Exp$ \nolimits$(z);    б) Exp$ \nolimits$(($ \alpha$ + $ \beta$)z) = Exp$ \nolimits$($ \alpha$z) . Exp$ \nolimits$($ \beta$z).
Прислать комментарий     Решение


Задача 61501  (#11.074)

Темы:   [ Формальные степенные ряды ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 4
Классы: 9,10,11

Функции a, b и c заданы рядами

   

   

   

Докажите, что   a³ + b³ + c³ – 3abc = (1 + x³)n.

Прислать комментарий     Решение

Задача 61502  (#11.075)

Темы:   [ Производящие функции ]
[ Числа Фибоначчи ]
[ Рациональные функции ]
Сложность: 4
Классы: 9,10,11

а) Докажите, что производящая функция последовательности чисел Фибоначчи   F(x) = F0 + F1x + F2x² + ... + Fnxn + ...

может быть записана в виде     где   = = .

б) Пользуясь результатом задачи 61490, получите формулу Бине (см. задачу 60578.

Прислать комментарий     Решение

Задача 61503  (#11.076)

Темы:   [ Числа Фибоначчи ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4
Классы: 9,10,11

Докажите, что бесконечная сумма

  0, 1
+ 0, 01
+ 0, 002
+ 0, 0003
+ 0, 00005
+ 0, 000008
+ 0, 0000013
  ...

сходится к рациональному числу.

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 100]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .