ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

При каких натуральных n число  n² – 1  является степенью простого числа?

   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 15]      



Задача 64479  (#11.1.1)

Темы:   [ Тригонометрические неравенства ]
[ Неравенство Коши ]
Сложность: 3
Классы: 9,10,11

Для каких значений x выполняется неравенство  

Прислать комментарий     Решение

Задача 64480  (#11.1.2)

Темы:   [ Диаметр, основные свойства ]
[ Аналитический метод в геометрии ]
Сложность: 3
Классы: 9,10,11

Окружность пересекает оси координат в точках  А(a, 0),  B(b, 0)  C(0, c)  и  D(0, d).  Найдите координаты её центра.

Прислать комментарий     Решение

Задача 64481  (#11.1.3)

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 9,10,11

При каких натуральных n число  n² – 1  является степенью простого числа?

Прислать комментарий     Решение

Задача 64482  (#11.2.1)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
[ Разложение на множители ]
[ Тригонометрический круг ]
Сложность: 3+
Классы: 10,11

Существует ли такое значение α, что все члены бесконечной последовательности cos α, cos 2α, ..., cos(2nα), ... принимают отрицательные значения?

Прислать комментарий     Решение

Задача 64483  (#11.2.2)

Темы:   [ Правильный тетраэдр ]
[ Правильный (равносторонний) треугольник ]
[ Теорема косинусов ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 10,11

На каждой грани правильного тетраэдра с ребром 1 во внешнюю сторону построены правильные тетраэдры. Четыре их вершины, не принадлежащие исходному тетраэдру, образовали новый тетраэдр. Найдите его рёбра.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .