ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Дано 25 чисел. Известно, что сумма любых четырёх из них положительна. Верно ли, что сумма всех чисел положительна?

Вниз   Решение


Существуют ли такие натуральные числа a, b, c, d, что  a/b + c/d = 1,  a/d + c/b = 2008?

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 7]      



Задача 64609  (#6)

Темы:   [ Арифметические действия. Числовые тождества ]
[ Уравнения в целых числах ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9

Существуют ли такие натуральные числа a, b, c, d, что  a/b + c/d = 1,  a/d + c/b = 2008?

Прислать комментарий     Решение

Задача 64610  (#7)

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Вписанные четырехугольники (прочее) ]
[ Углы между биссектрисами ]
[ Вписанный угол равен половине центрального ]
[ Теорема синусов ]
Сложность: 4
Классы: 8,9

В выпуклом четырёхугольнике ABCD нет параллельных сторон. Углы, образованные сторонами четырёхугольника с диагональю AC, равны (в каком-то порядке) 16°, 19°, 55° и 55°. Каким может быть острый угол между диагоналями AC и BD?

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .