Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Автор: Калинин А.

Одновременно из деревень A и Б навстречу друг другу вышли Аня и Боря (их скорости постоянны, но не обязательно одинаковы). Если бы Аня вышла на 30 минут раньше, то они встретились бы на 2 км ближе к деревне Б. Если бы Боря вышел на 30 минут раньше, то встреча состоялась бы ближе к деревне A. На сколько?

Вниз   Решение


Пусть O, I – центры описанной и вписанной окружностей прямоугольного треугольника; R, r – радиусы этих окружностей; J – точка, симметричная вершине прямого угла относительно I. Найдите OJ.

ВверхВниз   Решение


В равенстве 101 – 102 = 1 передвиньте одну цифру так, чтобы оно стало верным.

ВверхВниз   Решение


Про приведённый многочлен  P(x) = xn + an–1xn–1 + ... + a1x + a0  с действительными коэффициентами известно, что при некотором натуральном
m ≥ 2  многочлен    имеет действительные корни, причём только положительные. Обязательно ли сам многочлен P(x) имеет действительные корни, причём только положительные?

ВверхВниз   Решение


Автор: Рожкова М.

В неравнобедренном треугольнике ABC проведены высота из вершины A и биссектрисы из двух других вершин.
Докажите, что описанная окружность треугольника, образованного этими тремя прямыми, касается биссектрисы, проведённой из вершины A.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 64699  (#8.1)

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Вписанные и описанные окружности ]
[ Угол между касательной и хордой ]
Сложность: 3+
Классы: 8,9

Автор: Рожкова М.

В неравнобедренном треугольнике ABC проведены высота из вершины A и биссектрисы из двух других вершин.
Докажите, что описанная окружность треугольника, образованного этими тремя прямыми, касается биссектрисы, проведённой из вершины A.

Прислать комментарий     Решение

Задача 64700  (#8.2)

Тема:   [ ГМТ (прочее) ]
Сложность: 4-
Классы: 8,9

Даны две точки A и B. Найдите геометрическое место таких точек C, что точки A, B и C можно накрыть кругом единичного радиуса.

Прислать комментарий     Решение

Задача 64701  (#8.3)

Темы:   [ Четырехугольники (прочее) ]
[ Осевая и скользящая симметрии (прочее) ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Биссектриса угла (ГМТ) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4-
Классы: 8,9

В выпуклом четырёхугольнике ABCD лучи AB и DC пересекаются в точке K. На биссектрисе угла AKD нашлась такая точка P, что прямые BP и CP делят пополам отрезки AC и BD соответственно. Докажите, что  AB = CD.

Прислать комментарий     Решение

Задача 64702  (#8.4)

Темы:   [ Величина угла между двумя хордами и двумя секущими ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9

В равные углы X1OY и YOX2 вписаны окружности ω1 и ω2, касающиеся сторон OX1 и OX2 в точках A1 и A2 соответственно, а стороны OY – в точках B1 и B2. C1 – вторая точка пересечения A1B2 и ω1, а C2 – вторая точка пересечения A2B1 и ω2. Докажите, что C1C2 – общая касательная к окружностям.

Прислать комментарий     Решение

Задача 64703  (#8.5)

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 8,9

В треугольнике ABC проведены высота AH, биссектриса BL и медиана CM. Известно, что в треугольнике HLM прямая AH является высотой, а BL – биссектрисой. Докажите, что CM является в этом треугольнике медианой.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .