Страница: 1
2 >> [Всего задач: 6]
Задача
64707
(#1)
|
|
Сложность: 3 Классы: 8,9
|
Витя хочет найти такое выражение, состоящее из единиц, скобок, знаков "+" и "×" что
- его значение равно 10;
- если в этом выражении заменить все знаки "+" на знаки "×", а знаки "×" на знаки "+", всё равно получится 10.
Приведите пример такого выражения.
Задача
64708
(#2)
|
|
Сложность: 3+ Классы: 8,9
|
Будем называть змейкой ломаную, у которой все углы между соседними звеньями равны, причём для любого некрайнего звена соседние с ним звенья лежат в разных полуплоскостях от этого звена (пример змейки см. на рисунке). Барон Мюнхгаузен заявил, что отметил на плоскости 6 точек и нашёл 6 разных способов соединить их (пятизвенной) змейкой (вершины каждой из змеек – отмеченные точки). Могут ли его слова быть правдой?
Задача
64709
(#3)
|
|
Сложность: 3+ Классы: 8,9
|
Натуральные числа от 1 до 2014 как-то разбили на пары, числа в каждой из пар сложили, а полученные 1007 сумм перемножили.
Мог ли результат оказаться квадратом натурального числа?
Задача
64710
(#4)
|
|
Сложность: 3+ Классы: 8,9
|
В прямоугольнике ABCD точка M – середина стороны CD. Через точку C провели прямую, перпендикулярную прямой BM, а через точку M – прямую, перпендикулярную диагонали BD. Докажите, что два проведённых перпендикуляра пересекаются на прямой AD.
Задача
64711
(#5)
|
|
Сложность: 4- Классы: 8,9
|
В городе Плоском нет ни одной башни. Для развития туризма жители города собираются построить несколько башен общей высотой в 30 этажей. Инспектор Высотников, поднимаясь на каждую башню, считает число более низких башен, а потом складывает получившиеся величины. После чего инспектор рекомендует город тем сильнее, чем получившаяся величина больше. Сколько и какой высоты башен надо построить жителям, чтобы получить наилучшую возможную рекомендацию?
Страница: 1
2 >> [Всего задач: 6]