Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Найдите  (xn – 1, xm – 1).

Вниз   Решение


Шестиугольник ABCDEF вписан в окружность радиуса R с центром O, причём  AB = CD = EF = R.  Докажите, что точки попарного пересечения описанных окружностей треугольников BOC, DOE и FOA, отличные от точки O, являются вершинами правильного треугольника со стороной R.

ВверхВниз   Решение


Докажите, что   .

ВверхВниз   Решение


На окружности S с диаметром AB взята точка C, из точки C опущен перпендикуляр CH на прямую AB. Докажите, что общая хорда окружности S и окружности S1 с центром C и радиусом CH делит отрезок CH пополам.

ВверхВниз   Решение


Даны диаметр AB окружности и точка C, не лежащая на прямой AB. С помощью одной линейки (без циркуля) опустите перпендикуляр из точки C на AB, если: а) точка C не лежит на окружности; б) точка C лежит на окружности.

ВверхВниз   Решение


Колоду из 52 карт разложили в виде прямоугольника 13×4. Известно, что если две карты лежат рядом по вертикали или горизонтали, то они одной масти либо одного достоинства. Докажите, что в каждом горизонтальном ряду (из 13 карт) все карты одной масти.

ВверхВниз   Решение


Докажите справедливость формулы  

ВверхВниз   Решение


Пусть P(x) и Q(x) – многочлены, причём Q(x) не равен нулю тождественно и P(x) не делится на Q(x). Докажите, что при некотором  s ≥ 1  существуют такие многочлены  A0(x), A1(x), ..., As(x)  и  R1(x), ..., Rs(x),  что  degQ(x) > degR1(x) > degR2(x) > ... > degRs(x) ≥ 0,
    P(x) = Q(x)A0(x) + R1(x),
    Q(x) = R1(x)A1(x) + R2(x),
    R1(x) = R2(x)A2(x) + R3(x),
      ...
    Rs–2(x) = Rs–1(x)As–1(x) + Rs(x),
    Rs–1(x) = Rs(x)As(x)
и  (P(x), Q(x)) = Rs(x).

ВверхВниз   Решение


Среднее арифметическое четырёх чисел равно 10. Если вычеркнуть одно из этих чисел, то среднее арифметическое оставшихся трёх увеличится на 1, если вместо этого вычеркнуть другое число, то среднее арифметическое оставшихся чисел увеличится на 2, а если вычеркнуть третье число, то среднее арифметическое оставшихся увеличится на 3. Как изменится среднее арифметическое трёх оставшихся чисел, если вычеркнуть четвёртое число?

ВверхВниз   Решение


а) На сторонах произвольного треугольника внешним образом построены правильные треугольники. Докажите, что их центры образуют правильный треугольник.
б) Докажите аналогичное утверждение для треугольников, построенных внутренним образом.
в) Докажите, что разность площадей правильных треугольников, полученных в задачах а) и б), равна площади исходного треугольника.

ВверхВниз   Решение


При каких значениях параметра a многочлен  P(x) = xn + axn–2  (n ≥ 2)  делится на  x – 2 ?

ВверхВниз   Решение


На сторонах произвольного выпуклого четырёхугольника внешним образом построены квадраты. Докажите, что отрезки, соединяющие центры противоположных квадратов, равны и перпендикулярны.

ВверхВниз   Решение


После хоккейного матча Антон сказал, что он забил 3 шайбы, а Илья только одну. Илья сказал, что он забил 4 шайбы, а Серёжа целых 5. Серёжа сказал, что он забил 6 шайб, а Антон всего лишь две. Могло ли оказаться так, что втроём они забили 10 шайб, если известно, что каждый из них один раз сказал правду, а другой раз солгал?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]      



Задача 64931

Темы:   [ Математическая логика (прочее) ]
[ Перебор случаев ]
Сложность: 3+
Классы: 5,6

После хоккейного матча Антон сказал, что он забил 3 шайбы, а Илья только одну. Илья сказал, что он забил 4 шайбы, а Серёжа целых 5. Серёжа сказал, что он забил 6 шайб, а Антон всего лишь две. Могло ли оказаться так, что втроём они забили 10 шайб, если известно, что каждый из них один раз сказал правду, а другой раз солгал?

Прислать комментарий     Решение

Задача 64933

Тема:   [ Ребусы ]
Сложность: 3+
Классы: 5,6

Найдите все решения ребуса:  АРКА + РКА + КА + А = 2014.  (Различным буквам соответствуют различные цифры, а одинаковым буквам – одинаковые цифры.)

Прислать комментарий     Решение

Задача 64936

Тема:   [ Средние величины ]
Сложность: 3+
Классы: 5,6

Среднее арифметическое четырёх чисел равно 10. Если вычеркнуть одно из этих чисел, то среднее арифметическое оставшихся трёх увеличится на 1, если вместо этого вычеркнуть другое число, то среднее арифметическое оставшихся чисел увеличится на 2, а если вычеркнуть третье число, то среднее арифметическое оставшихся увеличится на 3. Как изменится среднее арифметическое трёх оставшихся чисел, если вычеркнуть четвёртое число?

Прислать комментарий     Решение

Задача 64939

Тема:   [ Текстовые задачи (прочее) ]
Сложность: 3+
Классы: 6,7

У юного художника была одна банка синей и одна банка жёлтой краски, каждой из которых хватает на покраску 38 дм2 площади. Использовав всю эту краску, он нарисовал картину: синее небо, зелёную траву и жёлтое солнце. Зелёный цвет он получал, смешивая две части жёлтой краски и одну часть синей. Какая площадь на его картине закрашена каждым цветом, если площадь травы на картине на 6 дм2 больше, чем площадь неба?

Прислать комментарий     Решение

Задача 64940

Тема:   [ Задачи с неравенствами. Разбор случаев ]
Сложность: 3+
Классы: 6,7

Биолог последовательно рассаживал 150 жуков в десять банок. Причём в каждую следующую банку он сажал жуков больше, чем в предыдущую. Количество жуков в первой банке составляет не менее половины от количества жуков в десятой банке. Сколько жуков в шестой банке?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .