Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Рассмотрим равнобедренные треугольники с одними и теми же боковыми сторонами.
Докажите, что чем больше угол при вершине, тем меньше высота, опущенная на основание.

Вниз   Решение


Угол треугольника равен сумме двух других его углов. Докажите, что треугольник прямоугольный.

ВверхВниз   Решение


Пусть h — наибольшая высота нетупоугольного треугольника. Докажите, что r + R $ \leq$ h.

ВверхВниз   Решение


Докажите, что прямая, проходящая через точки a1 и a2, задаётся уравнением

z($\displaystyle \bar{a}_{1}^{}$ - $\displaystyle \bar{a}_{2}^{}$) - $\displaystyle \bar{z}$(a1 - a2) + (a1$\displaystyle \bar{a}_{2}^{}$ - $\displaystyle \bar{a}_{1}^{}$a2) = 0.


ВверхВниз   Решение


В треугольнике ABC  ∠A = 45°,  BH – высота, точка K лежит на стороне AC, причём  BC = CK.
Докажите, что центр описанной окружности треугольника ABK совпадает с центром вневписанной окружности треугольника BCH.

ВверхВниз   Решение


Автор: Фольклор

Два параллелограмма расположены так, как показано на рисунке. Докажите, что диагональ одного параллелограмма проходит через точку пересечения диагоналей другого.

ВверхВниз   Решение


Доказать: сумма
  а) любого количества чётных слагаемых чётна;
  б) чётного количества нечётных слагаемых чётна;
  в) нечётного количества нечётных слагаемых нечётна.

ВверхВниз   Решение


Вася сложил четвёртую степень и квадрат некоторого числа, отличного от нуля, и сообщил результат Пете.
Сможет ли Петя однозначно определить Васино число?

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 7958]      



Задача 36910

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Простые числа и их свойства ]
[ Целочисленные треугольники ]
Сложность: 2
Классы: 7,8

Существует ли треугольник, градусная мера каждого угла которого выражается простым числом?

Прислать комментарий     Решение

Задача 64504

Темы:   [ Признаки делимости на 3 и 9 ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 6,7

Запишите несколько раз подряд число 2013 так, чтобы получившееся число делилось на 9.

Прислать комментарий     Решение

Задача 64557

Темы:   [ Арифметические действия. Числовые тождества ]
[ Десятичная система счисления ]
Сложность: 2
Классы: 8,9

Найдите сумму цифр в десятичной записи числа 412·521.

Прислать комментарий     Решение

Задача 64792

Тема:   [ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 2
Классы: 7,8

В равнобедренном треугольнике АВС угол В равен 30°,  АВ = ВС = 6.  Проведены высота CD треугольника АВС и высота DE треугольника BDC.
Найдите ВЕ.

Прислать комментарий     Решение

Задача 64990

Тема:   [ Уравнения высших степеней (прочее) ]
Сложность: 2
Классы: 7,8,9

Вася сложил четвёртую степень и квадрат некоторого числа, отличного от нуля, и сообщил результат Пете.
Сможет ли Петя однозначно определить Васино число?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 7958]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .