Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Доказать: произведение
  а) двух нечётных чисел нечётно;
  б) чётного числа с любым целым числом чётно.

Вниз   Решение


Существует ли выпуклый пятиугольник, в котором каждая диагональ равна какой-то стороне?

ВверхВниз   Решение


Братья Петя и Вася решили снять смешной ролик и выложить его в интернет. Сначала они сняли, как каждый из них идёт из дома в школу — Вася шёл 8 минут, а Петя шёл 5 минут. Потом пришли домой и сели за компьютер монтировать видео: они запустили одновременно Васино видео с начала и Петино видео с конца (в обратном направлении); в момент, когда на обоих роликах братья оказались в одной и той же точке пути, они склеили Петино видео с Васиным. Получился ролик, на котором Вася идёт из дома в школу, а потом в какой-то момент вдруг превращается в Петю и идёт домой задом наперёд. А какой длительности получился ролик?

ВверхВниз   Решение


Можно ли правильную треугольную призму разрезать на две равные пирамиды?

ВверхВниз   Решение


Занумеруем все простые числа в порядке возрастания:  p1 = 2,  p2 = 3,  ... .
Может ли среднее арифметическое     при каком-нибудь  n ≥ 2  быть простым числом?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 65076  (#1)

Темы:   [ Средние величины ]
[ Простые числа и их свойства ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9

Занумеруем все простые числа в порядке возрастания:  p1 = 2,  p2 = 3,  ... .
Может ли среднее арифметическое     при каком-нибудь  n ≥ 2  быть простым числом?

Прислать комментарий     Решение

Задача 65077  (#2)

Темы:   [ Теория алгоритмов (прочее) ]
[ Теория графов (прочее) ]
Сложность: 4-
Классы: 8,9

В Швамбрании некоторые города связаны двусторонними беспосадочными авиарейсами. Рейсы разделены между тремя авиакомпаниями, причём если какая-то авиакомпания обслуживает линию между городами А и Б, то самолёты других компаний между этими городами не летают. Известно, что из каждого города летают самолёты всех трёх компаний. Докажите, что можно, вылетев из некоторого города, вернуться в него, воспользовавшись по пути рейсами всех трёх компаний и не побывав ни в одном из промежуточных городов дважды.

Прислать комментарий     Решение

Задача 65078  (#3)

Темы:   [ Четырехугольники (прочее) ]
[ Вспомогательные равные треугольники ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 4-
Классы: 8,9

В четырёхугольнике ABCD сторона AB равна диагонали AC и перпендикулярна стороне AD, а диагональ AC перпендикулярна стороне CD. На стороне AD взята такая точка K , что  AC = AK.  Биссектриса угла ADC пересекает BK в точке M. Найдите угол ACM.

Прислать комментарий     Решение

Задача 65079  (#4)

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Неравенство Коши ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 4
Классы: 8,9

В вершинах куба расставили числа 1², 2², ..., 8² (в каждую из вершин – по одному числу). Для каждого ребра посчитали произведение чисел в его концах. Найдите наибольшую возможную сумму всех этих произведений.

Прислать комментарий     Решение

Задача 65080  (#5)

Темы:   [ Перестановки и подстановки (прочее) ]
[ Теория алгоритмов (прочее) ]
Сложность: 4-
Классы: 8,9

Автор: Храмцов Д.

На полке в произвольном порядке стоят десять томов энциклопедии, пронумерованных от 1 до 10. Разрешается менять местами любые два тома, между которыми стоит не меньше четырёх других томов. Всегда ли можно расставить все тома по возрастанию номеров?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .