|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Этапы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи К плоскости приклеены два непересекающихся не обязательно одинаковых деревянных круга – серый и чёрный. Дан бесконечный деревянный угол, одна сторона которого серая, а другая – чёрная. Его передвигают так, чтобы круги были снаружи угла, причём серая сторона касалась серого круга, а чёрная – чёрного (касание происходит не в вершине). Докажите, что внутри угла можно нарисовать луч, выходящий из вершины, так, чтобы при всевозможных положениях угла этот луч проходил через одну и ту же точку плоскости. Назовём натуральное число почти квадратом, если оно равно произведению двух последовательных натуральных чисел. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48]
За круглым столом сидят 2015 человек, каждый из них – либо рыцарь, либо лжец. Рыцари всегда говорят правду, лжецы всегда лгут. Им раздали по одной карточке, на каждой карточке написано по числу; при этом все числа на карточках различны. Посмотрев на карточки соседей, каждый из сидящих за столом сказал: "Мое число больше, чем у каждого из двух моих соседей". После этого k из сидящих сказали: "Мое число меньше, чем у каждого из двух моих соседей". При каком наибольшем k это могло случиться?
Целые числа a, x1, x2, ..., x13 таковы, что a = (1 + x1)(1 + x2)...(1 + x13) = (1 – x1)(1 – x2)...(1 – x13). Докажите, что ax1x2...x13 = 0.
Целые числа a, x1, x2, ..., x13 таковы, что a = (1 + x1)(1 + x2)...(1 + x13) = (1 – x1)(1 – x2)...(1 – x13). Докажите, что ax1x2...x13 = 0.
Числа a и b таковы, что каждый из двух квадратных трёхчленов x² + ax + b и x² + bx + a имеет по два различных корня, а произведение этих трёхчленов имеет ровно три различных корня. Найдите все возможные значения суммы этих трёх корней.
Назовём натуральное число почти квадратом, если оно равно произведению двух последовательных натуральных чисел.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|