ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На планете Олимпия рабочие строят новую дамбу. Часть плоскости, на которой проводятся строительные работы, имеет вид прямоугольника размером 1 x L метров, на котором введены координаты, как показано на рисунке.

Для поднятия ландшафта используют специально разработанные магические импульсаторы. Если магический импульсатор силой H поставить в точку с X-координатой p, то в каждой точке q отрезка [p-H;p] на оси X рельеф поднимается на q-p+H метров по всей его ширине (то есть для произвольного Z от 0 до 1), а в каждой точке q отрезка [p;p+H] рельеф поднимается на H+p-q метров по всей его ширине, в остальных точках ландшафт остается неизменным (см. рисунок).

Во время строительства рабочие время от времени интересуются объёмом части дамбы, находящейся над некоторым прямоугольником.

Задание

Напишите программу ROCKS, которая поможет рабочим в их расчётах.

Входные данные

В первой строке входного файла ROCKS.DAT содержатся два целых числа: N - количество операций, которые будут выполнять рабочие (1≤N?100000), и L - длина прямоугольника (1≤L?100000).

В следующих N строках содержатся описания операций: первое число строки - номер операции, где "1" означает, что рабочие собираются поставить магический импульсатор, "2" - рабочие хотят узнать некоторый объём. Если операция имеет код "1", то далее идут два целых числа p и H (0≤p?L; 1≤H?L), то есть импульсатор силой H ставят в позицию p (на оси X). Если операция имеет код "2", то далее идут два целых числа A и B (0≤A<B?L); это означает, что рабочие хотят узнать объём части дамбы, которая находится над прямоугольником от A до B по оси X, и от 0 до 1 по оси Z.

Выходные данные

Создайте выходной файл ROCKS.SOL, в котором для каждой операции, указанной во входном файле, выведите строку со следующей информацией.

Если операция есть "1", то выведите число "-1" без кавычек. Если операция есть "2", то выведите число, равное объёму части дамбы, которая находится над прямоугольником от A до B по оси X, и от 0 до 1 по оси Z, как показано на рисунке.

Пример входных и выходных данных

ROCKS.DAT

ROCKS.SOL

2 13

1 7 5

2 5 9

-1

16

Вниз   Решение


Автор: Соколов А.

Пусть H и O – ортоцентр и центр описанной окружности треугольника ABC. Описанная окружность треугольника AOH, пересекает серединный перпендикуляр к BC в точке A1. Аналогично определяются точки B1 и C1. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке.

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 65381  (#10.6)

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Композиции симметрий ]
Сложность: 4
Классы: 10,11

Автор: Соколов А.

Пусть H и O – ортоцентр и центр описанной окружности треугольника ABC. Описанная окружность треугольника AOH, пересекает серединный перпендикуляр к BC в точке A1. Аналогично определяются точки B1 и C1. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке.

Прислать комментарий     Решение

Задача 65382  (#10.7)

Темы:   [ Четырехугольная пирамида ]
[ Сфера, описанная около пирамиды ]
[ Прямые и плоскости в пространстве (прочее) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Инверсия помогает решить задачу ]
Сложность: 4
Классы: 10,11

Четырёхугольная пирамида SABCD вписана в сферу. Из вершин A, B, C, D опущены перпендикуляры AA1, BB1, CC1, DD1 на прямые SC, SD, SA, SB соответственно. Оказалось, что точки S, A1, B1, C1, D1 различны и лежат на одной сфере. Докажите, что точки A1, B1, C1, D1 лежат в одной плоскости.

Прислать комментарий     Решение

Задача 65383  (#10.8)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Рациональные и иррациональные числа ]
[ Доказательство от противного ]
[ Четность и нечетность ]
Сложность: 4
Классы: 10,11

Можно ли разрезать какой-нибудь прямоугольник на правильный шестиугольник со стороной 1 и несколько равных прямоугольных треугольников с катетами 1 и ?

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .