|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Поля шахматной доски пронумерованы по строкам сверху вниз числами от 1 до 64. На доску случайным образом поставлено шесть ладей, которые не бьют друг друга (одна из возможных расстановок показана на рисунке). Найдите математическое ожидание суммы номеров полей, занятых ладьями. По кольцевой дорожке длиной 60 см движутся в обе стороны муравьи со скоростью 1 см/c. Когда два муравья сталкиваются, они мгновенно разворачиваются и движутся с той же скоростью в противоположных направлениях. Оказалось, что за минуту произошло 48 попарных столкновений. Сколько муравьев могло быть на дорожке? |
Страница: << 1 2 3 >> [Всего задач: 15]
Существует ли прямоугольный треугольник, у которого длины двух сторон – целые числа, а длина третьей стороны равна
По кольцевой дорожке длиной 60 см движутся в обе стороны муравьи со скоростью 1 см/c. Когда два муравья сталкиваются, они мгновенно разворачиваются и движутся с той же скоростью в противоположных направлениях. Оказалось, что за минуту произошло 48 попарных столкновений. Сколько муравьев могло быть на дорожке?
СН – высота остроугольного треугольника АВС, О – центр его описанной окружности. Точка Т – проекция вершины С на прямую АО.
Дано 100 целых чисел. Из первого числа вычли сумму цифр второго числа, из второго вычли сумму цифр третьего числа, и так далее, наконец, из 100-го числа вычли сумму цифр первого числа. Могут ли эти разности оказаться соответственно равными 1, 2, ..., 100 в каком-то порядке?
Решите систему уравнений:
Страница: << 1 2 3 >> [Всего задач: 15] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|