ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Взяли несколько положительных чисел и построили по ним такую последовательность: a1 – сумма исходных чисел, a2 – сумма квадратов исходных чисел, a3 – сумма кубов исходных чисел, и т.д. |
Страница: 1 2 >> [Всего задач: 7]
В шахматном турнире было 10 участников. В каждом туре участники разбивались на пары и в каждой паре играли друг с другом одну игру. В итоге каждый участник сыграл с каждым ровно один раз, причём не меньше чем в половине всех игр участники были земляками (из одного города). Докажите, что в каждом туре хоть одна игра была между земляками.
Можно ли нарисовать на клетчатой бумаге многоугольник и поделить его на две равные части разрезом такой формы, как показано на рисунке
Взяли несколько положительных чисел и построили по ним такую последовательность: a1 – сумма исходных чисел, a2 – сумма квадратов исходных чисел, a3 – сумма кубов исходных чисел, и т.д.
В выпуклом шестиугольнике ABCDEF все стороны равны, а также AD = BE = CF. Докажите, что в этот шестиугольник можно вписать окружность.
Вес каждой гирьки набора – нецелое число грамм. Ими можно уравновесить любой целый вес от 1 г до 40 г (гири кладутся на одну чашку весов, измеряемый вес – на другую). Каково наименьшее число гирь в таком наборе?
Страница: 1 2 >> [Всего задач: 7]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке