ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Доказать, что никакая степень числа 2 не оканчивается четырьмя одинаковыми цифрами. Найти все натуральные числа x, обладающие следующим свойством: из каждой цифры числа x можно вычесть одну и ту же цифру a ≠ 0 (все цифры его не меньше a) и при этом получится (x − a)². Остроугольный равнобедренный треугольник ABC (AB = AC) вписан в окружность с центром O. Лучи BO и CO пересекают стороны AC и AB в точках B' и C' соответственно. Через точку C' проведена прямая l, параллельная прямой AC. Докажите, что прямая l касается описанной окружности ω треугольника B'OC. Составить две прогрессии: арифметическую и геометрическую, каждую из четырёх членов; при этом, если сложить одноимённые члены обеих прогрессий, то должны получиться числа: 27, 27, 39, 87. На плоскости дано пять точек, причем никакие три из
них не лежат на одной прямой. Докажите, что четыре из этих
точек расположены в вершинах выпуклого четырехугольника.
Собралось n человек. Некоторые из них знакомы между собой, причём каждые два незнакомых имеют ровно двух общих знакомых, а каждые два знакомых не имеют общих знакомых. Доказать, что каждый из присутствующих знаком с одинаковым числом человек. Можно ли записать в строку 50 чисел так, чтобы сумма любых 17 последовательных чисел была положительна, а сумма любых 10 последовательных чисел была отрицательна? В стране некоторые пары городов соединены односторонними прямыми авиарейсами (между любыми двумя городами есть не более одного рейса). Скажем, что город A доступен для города B, если из B можно долететь в A, возможно, с пересадками. Известно, что для любых двух городов P и Q существует город R, для которого и P, и Q доступны. Докажите, что существует город, для которого доступны все города страны. (Считается, что город доступен для себя.) |
Страница: 1 2 3 4 5 >> [Всего задач: 24]
В стране некоторые пары городов соединены односторонними прямыми авиарейсами (между любыми двумя городами есть не более одного рейса). Скажем, что город A доступен для города B, если из B можно долететь в A, возможно, с пересадками. Известно, что для любых двух городов P и Q существует город R, для которого и P, и Q доступны. Докажите, что существует город, для которого доступны все города страны. (Считается, что город доступен для себя.)
На координатной плоскости нарисованы графики двух приведённых квадратных трёхчленов и две непараллельные прямые l1 и l2. Известно, что отрезки, высекаемые графиками на l1, равны, и отрезки, высекаемые графиками на l2, также равны. Докажите, что графики трёхчленов совпадают.
Число x таково, что обе суммы S = sin 64x + sin 65x и C = cos 64x + cos 65x – рациональные числа.
Дана равнобокая трапеция ABCD с основаниями BC и AD. Окружность ω проходит через вершины B и C и вторично пересекает сторону AB и диагональ BD в точках X и Y соответственно. Касательная, проведённая к окружности ω в точке C, пересекает луч AD в точке Z. Докажите, что точки X, Y и Z лежат на одной прямой.
Остроугольный равнобедренный треугольник ABC (AB = AC) вписан в окружность с центром O. Лучи BO и CO пересекают стороны AC и AB в точках B' и C' соответственно. Через точку C' проведена прямая l, параллельная прямой AC. Докажите, что прямая l касается описанной окружности ω треугольника B'OC.
Страница: 1 2 3 4 5 >> [Всего задач: 24]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке