Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Доказать, что никакая степень числа 2 не оканчивается четырьмя одинаковыми цифрами.

Вниз   Решение


Найти все натуральные числа x, обладающие следующим свойством: из каждой цифры числа x можно вычесть одну и ту же цифру  a ≠ 0  (все цифры его не меньше a) и при этом получится  (xa)².

ВверхВниз   Решение


Остроугольный равнобедренный треугольник ABC  (AB = AC)  вписан в окружность с центром O. Лучи BO и CO пересекают стороны AC и AB в точках B' и C' соответственно. Через точку C' проведена прямая l, параллельная прямой AC. Докажите, что прямая l касается описанной окружности ω треугольника B'OC.

ВверхВниз   Решение


Составить две прогрессии: арифметическую и геометрическую, каждую из четырёх членов; при этом, если сложить одноимённые члены обеих прогрессий, то должны получиться числа: 27, 27, 39, 87.

ВверхВниз   Решение


На плоскости дано пять точек, причем никакие три из них не лежат на одной прямой. Докажите, что четыре из этих точек расположены в вершинах выпуклого четырехугольника.

ВверхВниз   Решение


Собралось n человек. Некоторые из них знакомы между собой, причём каждые два незнакомых имеют ровно двух общих знакомых, а каждые два знакомых не имеют общих знакомых. Доказать, что каждый из присутствующих знаком с одинаковым числом человек.

ВверхВниз   Решение


Можно ли записать в строку 50 чисел так, чтобы сумма любых 17 последовательных чисел была положительна, а сумма любых 10 последовательных чисел была отрицательна?

ВверхВниз   Решение


В стране некоторые пары городов соединены односторонними прямыми авиарейсами (между любыми двумя городами есть не более одного рейса). Скажем, что город A доступен для города B, если из B можно долететь в A, возможно, с пересадками. Известно, что для любых двух городов P и Q существует город R, для которого и P, и Q доступны. Докажите, что существует город, для которого доступны все города страны. (Считается, что город доступен для себя.)

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 66147  (#9.1)

Темы:   [ Ориентированные графы ]
[ Доказательство от противного ]
[ Принцип крайнего (прочее) ]
Сложность: 3+
Классы: 8,9,10

В стране некоторые пары городов соединены односторонними прямыми авиарейсами (между любыми двумя городами есть не более одного рейса). Скажем, что город A доступен для города B, если из B можно долететь в A, возможно, с пересадками. Известно, что для любых двух городов P и Q существует город R, для которого и P, и Q доступны. Докажите, что существует город, для которого доступны все города страны. (Считается, что город доступен для себя.)

Прислать комментарий     Решение

Задача 66155  (#10.1)

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Квадратный трехчлен (прочее) ]
[ Перенос помогает решить задачу ]
Сложность: 3+
Классы: 9,10,11

На координатной плоскости нарисованы графики двух приведённых квадратных трёхчленов и две непараллельные прямые l1 и l2. Известно, что отрезки, высекаемые графиками на l1, равны, и отрезки, высекаемые графиками на l2, также равны. Докажите, что графики трёхчленов совпадают.

Прислать комментарий     Решение

Задача 66162  (#11.1)

Темы:   [ Рациональные и иррациональные числа ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 3+
Классы: 9,10,11

Число x таково, что обе суммы  S = sin 64x + sin 65x  и  C = cos 64x + cos 65x  – рациональные числа.
Докажите, что в одной из этих сумм оба слагаемых рациональны.

Прислать комментарий     Решение

Задача 66148  (#9.2)

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Три точки, лежащие на одной прямой ]
[ Вписанные четырехугольники (прочее) ]
[ Угол между касательной и хордой ]
Сложность: 4-
Классы: 8,9,10

Дана равнобокая трапеция ABCD с основаниями BC и AD. Окружность ω проходит через вершины B и C и вторично пересекает сторону AB и диагональ BD в точках X и Y соответственно. Касательная, проведённая к окружности ω в точке C, пересекает луч AD в точке Z. Докажите, что точки X, Y и Z лежат на одной прямой.

Прислать комментарий     Решение

Задача 66156  (#10.2)

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанные и описанные окружности ]
[ Симметрия помогает решить задачу ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
Сложность: 4-
Классы: 9,10,11

Остроугольный равнобедренный треугольник ABC  (AB = AC)  вписан в окружность с центром O. Лучи BO и CO пересекают стороны AC и AB в точках B' и C' соответственно. Через точку C' проведена прямая l, параллельная прямой AC. Докажите, что прямая l касается описанной окружности ω треугольника B'OC.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .