Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

В прямоугольном треугольнике ABC точка C0 – середина гипотенузы AB, AA1, BB1 – биссектрисы, I – центр вписанной окружности.
Докажите, что прямые C0I и A1B1 пересекаются на высоте CH.

Вниз   Решение


Сфера, вписанная в пирамиду SABC, касается граней SAB, SBC, SCA в точках D, E, F соответственно.
Найдите все возможные значения суммы углов SDA, SEB и SFC.

ВверхВниз   Решение


В остроугольном треугольнике ABC проведены высоты BB', CC'. Через A и C' проведены две окружности, касающиеся BC в точках P и Q.
Докажите, что точки A, B', P, Q лежат на одной окружности.

ВверхВниз   Решение


Даны натуральные числа a и b, причём  a < b < 2a. На клетчатой плоскости отмечены некоторые клетки так, что в каждом клетчатом прямоугольнике a×b или b×a есть хотя бы одна отмеченная клетка. При каком наибольшем α можно утверждать, что для любого натурального N найдётся клетчатый квадрат N×N, в котором отмечено хотя бы αN² клеток?

ВверхВниз   Решение


Чётное число орехов разложено на три кучки. За одну операцию можно переложить половину орехов из кучки с чётным числом орехов в любую другую кучку. Докажите, что, как бы орехи ни были разложены изначально, такими операциями можно в какой-нибудь кучке собрать ровно половину всех орехов.

ВверхВниз   Решение


В стране лингвистов существует n языков. Там живет m людей, каждый из которых знает ровно три языка, причём для разных людей эти наборы различны. Известно, что максимальное число людей, любые два из которых могут поговорить без посредников, равно k. Оказалось, что  11nk ≤ m/2.
Докажите, что тогда в стране найдутся хотя бы mn пар людей, которые не смогут поговорить без посредников.

ВверхВниз   Решение


В клетках таблицы 3×3 расставлены числа так, что сумма чисел в каждом столбце и в каждой строке равна нулю. Какое наименьшее количество чисел, отличных от нуля, может быть в этой таблице, если известно, что оно нечётно?

ВверхВниз   Решение


Автор: Шноль Д.Э.

Каждая буква в словах ЭХ и МОРОЗ соответствует какой-то цифре, причём одинаковым цифрам соответствуют одинаковые буквы, а разным – разные.

Известно, что  Э·Х = M·О·Р·О·З,  а  Э + Х = М + О + Р + О + З.  Чему равно  Э·Х + M·О·Р·О·З?

ВверхВниз   Решение


Неравнобедренный треугольник ABC вписан в окружность ω. Касательная к этой окружности в точке C пересекает прямую AB в точке D. Пусть I – центр вписанной окружности, треугольника ABC. Прямые AI и BI пересекают биссектрису угла CDB в точках Q и P соответственно. Пусть M – середина отрезка PQ. Докажите, что прямая MI проходит через середину дуги ACB окружности ω.

ВверхВниз   Решение


Автор: Mahdi Etesami Fard

В прямоугольном треугольнике ABC точка D – середина высоты, опущенной на гипотенузу AB. Прямые, симметричные AB относительно AD и BD, пересекаются в точке F. Найдите отношение площадей треугольников ABF и ABC.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 48]      



Задача 66209  (#6)

Темы:   [ Четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Теоремы Чевы и Менелая ]
Сложность: 4-
Классы: 8,9,10

Дан четырёхугольник ABCD, в котором  AC = BD = AD;  точки E и F – середины AB и CD соответственно; O – точка пересечения диагоналей четырёхугольника. Докажите, что EF проходит через точки касания вписанной окружности треугольника AOD с его сторонами AO и OD.

Прислать комментарий     Решение

Задача 66322  (#8.6)

Темы:   [ Вписанные и описанные окружности ]
[ Покрытия ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
Сложность: 3+
Классы: 8,9

Остроугольный треугольник разбили медианой на два меньших треугольника.
Докажите, что каждый из них можно накрыть полукругом, равным половинке описанного круга исходного треугольника.

Прислать комментарий     Решение

Задача 66311  (#9.6)

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Вспомогательные подобные треугольники ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 3+
Классы: 9,10

Автор: Mahdi Etesami Fard

В прямоугольном треугольнике ABC точка D – середина высоты, опущенной на гипотенузу AB. Прямые, симметричные AB относительно AD и BD, пересекаются в точке F. Найдите отношение площадей треугольников ABF и ABC.

Прислать комментарий     Решение

Задача 66319  (#10.6)

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Касательные к сферам ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 10,11

Сфера, вписанная в пирамиду SABC, касается граней SAB, SBC, SCA в точках D, E, F соответственно.
Найдите все возможные значения суммы углов SDA, SEB и SFC.

Прислать комментарий     Решение

Задача 66210  (#7)

Темы:   [ Вписанные и описанные окружности ]
[ Неравенства для элементов треугольника (прочее) ]
[ Формула Эйлера ]
Сложность: 4-
Классы: 8,9,10

В треугольнике центр описанной окружности лежит на вписанной окружности.
Докажите, что отношение наибольшей стороны треугольника к наименьшей меньше 2.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .