ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В ряд лежат $100N$ бутербродов, каждый с колбасой и сыром. Дядя Федор и кот Матроскин играют в игру. Дядя Федор за одно действие съедает один бутерброд с одного из краев. Кот Матроскин за одно действие может стянуть колбасу с одного бутерброда (а может ничего не делать). Дядя Федор каждый ход делает по $100$ действий подряд, а кот Матроскин делает только $1$ действие; дядя Федор ходит первым, кот Матроскин вторым, далее ходы чередуются до тех пор, пока дядя Федор не доест все бутерброды. Дядя Федор выигрывает, если последний съеденный им бутерброд был с колбасой. Верно ли, что при каждом натуральном $N$ он сможет выиграть независимо от ходов кота Матроскина?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 66900  (#1)

Темы:   [ Теория алгоритмов (прочее) ]
[ Деление с остатком ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Дидин М.

В комнате находится несколько детей и куча из 1000 конфет. Дети по очереди подходят к куче. Каждый подошедший делит количество конфет в куче на количество детей в комнате, округляет (если получилось нецелое), забирает полученное число конфет и выходит из комнаты. При этом мальчики округляют вверх, а девочки – вниз. Докажите, что суммарное количество конфет у мальчиков, когда все выйдут из комнаты, не зависит от порядка детей в очереди.
Прислать комментарий     Решение


Задача 66907  (#2)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Алгебра и арифметика (прочее) ]
Сложность: 3+
Классы: 9,10,11

Автор: Соколов А.

Существует ли такое натуральное $n$, что для любых вещественных чисел $x$ и $y$ найдутся вещественные числа $a_1, \ldots, a_n$, удовлетворяющие равенствам $$x = a_1 + \ldots + a_n\quad \text{и} \quad y = \frac{1}{a_1}+ \ldots + \frac{1}{a_n}?$$
Прислать комментарий     Решение


Задача 66588  (#3)

Темы:   [ Вписанные четырехугольники ]
[ Угол между касательной и хордой ]
[ Средняя линия треугольника ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4-
Классы: 8,9,10,11

Точка $M$ – середина стороны $BC$ треугольника $ABC$. Окружность $\omega$ проходит через точку $A$, касается прямой $BC$ в точке $M$ и пересекает сторону $AB$ в точке $D$, а сторону $AC$ – в точке $E$. Пусть $X$ и $Y$ – середины отрезков $BE$ и $CD$ соответственно. Докажите, что окружность, описанная около треугольника $MXY$, касается $\omega$.
Прислать комментарий     Решение


Задача 66589  (#4)

Тема:   [ Теория игр (прочее) ]
Сложность: 4
Классы: 9,10,11

В ряд лежат $100N$ бутербродов, каждый с колбасой и сыром. Дядя Федор и кот Матроскин играют в игру. Дядя Федор за одно действие съедает один бутерброд с одного из краев. Кот Матроскин за одно действие может стянуть колбасу с одного бутерброда (а может ничего не делать). Дядя Федор каждый ход делает по $100$ действий подряд, а кот Матроскин делает только $1$ действие; дядя Федор ходит первым, кот Матроскин вторым, далее ходы чередуются до тех пор, пока дядя Федор не доест все бутерброды. Дядя Федор выигрывает, если последний съеденный им бутерброд был с колбасой. Верно ли, что при каждом натуральном $N$ он сможет выиграть независимо от ходов кота Матроскина?
Прислать комментарий     Решение


Задача 66904  (#5)

Темы:   [ Теория алгоритмов (прочее) ]
[ Кооперативные алгоритмы ]
[ Оценка + пример ]
Сложность: 4
Классы: 8,9,10,11

Автор: Ивлев Ф.

В отель ночью приехали $100$ туристов. Они знают, что в отеле есть одноместные номера $1$, $2, \ldots, n$, из которых $k$ на ремонте (но неизвестно какие), а остальные свободны. Туристы могут заранее договориться о своих действиях, после чего по очереди уходят заселяться: каждый проверяет номера в любом порядке, находит первый свободный номер не на ремонте и остаётся там ночевать. Но туристы не хотят беспокоить друг друга: нельзя проверять номер, куда уже кто-то заселился. Для каждого $k$ укажите наименьшее $n$, при котором туристы гарантированно смогут заселиться, не потревожив друг друга.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .