|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Графики квадратного трёхчлена и его производной разбивают координатную плоскость на четыре части. Сколько корней имеет этот квадратный трёхчлен? Точки A1, B1, C1 движутся по прямым BC, CA, AB так, что все треугольники A1B1C1 подобны одному и тому же треугольнику (треугольники предполагаются не только подобными, но и одинаково ориентированными). Докажите, что треугольник A1B1C1 имеет минимальный размер тогда и только тогда, когда перпендикуляры, восставленные из точек A1, B1, C1 к прямым BC, CA, AB пересекаются в одной точке. Докажите тождество: 13 + 23 +...+ n3 = (1 + 2 +...+ n)2. Сумма кубов трёх последовательных натуральных чисел оказалась кубом натурального числа. Докажите, что среднее из этих трёх чисел делится на 4. Назовём девятизначное число красивым, если все его цифры различны. |
Страница: 1 [Всего задач: 5]
Окружность, проходящая через вершину $B$ прямого угла и середину гипотенузы прямоугольного треугольника $ABC$, пересекает катеты этого треугольника в точках $M$ и $N$. Оказалось, что $AC = 2MN$. Докажите, что $M$ и $N$ — середины катетов треугольника $ABC$.
Найдите все натуральные $n$, удовлетворяющие условию: числа $1, 2, 3, \ldots, 2n$ можно разбить на пары так, что если сложить числа в каждой паре и результаты перемножить, получится квадрат натурального числа.
Клетчатый прямоугольник размера 7×14 разрезали по линиям сетки на квадраты 2×2 и уголки из трёх клеток. Могло ли квадратов получиться
У Насти есть пять одинаковых с виду монет, среди которых три настоящие – весят одинаково – и две фальшивые: одна тяжелее настоящей, а вторая на столько же легче настоящей. Эксперт по просьбе Насти сделает на двухчашечных весах без гирь три взвешивания, которые она укажет, после чего сообщит Насте результаты. Может ли Настя выбрать взвешивания так, чтобы по их результатам гарантированно определить обе фальшивые монеты и указать, какая из них более тяжёлая, а какая более лёгкая?
Назовём девятизначное число красивым, если все его цифры различны.
Страница: 1 [Всего задач: 5] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|