Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 820]
|
|
Сложность: 3 Классы: 8,9,10,11
|
Пусть $O$ – центр описанной окружности треугольника $ABC$. На стороне $BC$ нашлись точки $X$ и $Y$ такие, что $AX=BX$ и $AY=CY$. Докажите, что окружность, описанная около треугольника $AXY$, проходит через центры описанных окружностей треугольников $AOB$ и $AOC$.
|
|
Сложность: 3 Классы: 9,10,11
|
В треугольнике $ABC$ $(\angle C=90^{\circ})$, $CH$ – высота; $HA_{1}, HB_{1}$ – биссектрисы углов $\angle CHB, \angle AHC$ соответственно; $E, F$ – середины отрезков $HB_{1}$ и $HA_{1}$ соответственно. Докажите, что прямые $AE$ и $BF$ пересекаются на биссектрисе угла $ACB$.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Дан вписанный четырехугольник $ABCD$. Пусть $E=AC\cap BD$, $F=AD\cap BC$.
Биссектрисы углов $AFB$ и $AEB$ пересекают $CD$ в точках $X, Y$.
Докажите, что точки $A, B, X, Y$ лежат на одной окружности.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Дана равнобокая трапеция $ABCD$ ($AB=CD$). На описанной около неё окружности выбирается точка $P$ так, что отрезок $CP$ пересекает основание $AD$ в точке $Q$. Пусть $L$ – середина $QD$. Докажите, что длина диагонали трапеции не превосходит суммы расстояний от середин её боковых сторон до любой точки прямой $PL$.
В пятиугольнике ABCDE углы ABC и AED – прямые, AB = AE и BC = CD = DE. Диагонали BD и CE пересекаются в точке F.
Докажите, что FA = AB.
Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 820]