ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На столе в ряд лежат 20 плюшек с сахаром и 20 с корицей в произвольном порядке. Малыш и Карлсон берут их по очереди, начинает Малыш. За ход можно взять одну плюшку с любого края. Малыш хочет, чтобы ему в итоге досталось по десять плюшек каждого вида, а Карлсон пытается ему помешать. При любом ли начальном расположении плюшек Малыш может достичь своей цели, как бы ни действовал Карлсон? Решение |
Страница: << 1 2 [Всего задач: 7]
Докажите для любых натуральных чисел $a_1, a_2, ..., a_n$ неравенство $\bigg\lfloor\frac{a_1^2}{a_2}\bigg\rfloor + \bigg\lfloor\frac{a_2^2}{a_3}\bigg\rfloor + ... + \bigg\lfloor\frac{a_n^2}{a_1}\bigg\rfloor \geqslant a_1 + a_2 + ... +a_n$. ([$x$] – целая часть числа $x$.)
На столе в ряд лежат 20 плюшек с сахаром и 20 с корицей в произвольном порядке. Малыш и Карлсон берут их по очереди, начинает Малыш. За ход можно взять одну плюшку с любого края. Малыш хочет, чтобы ему в итоге досталось по десять плюшек каждого вида, а Карлсон пытается ему помешать. При любом ли начальном расположении плюшек Малыш может достичь своей цели, как бы ни действовал Карлсон?
Страница: << 1 2 [Всего задач: 7] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|