Страница: 1 2 >> [Всего задач: 7]
Задача
67048
(#1)
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В ряд записаны n>2 различных ненулевых чисел, причём каждое следующее больше предыдущего на одну и ту же величину. Обратные к этим n числам тоже удалось записать в ряд (возможно, в другом порядке) так, что каждое следующее больше предыдущего на одну и ту же величину (возможно, иную, чем в первом случае). Чему могло равняться n?
Задача
67049
(#2)
|
|
Сложность: 3+ Классы: 8,9,10,11
|
На столе лежат 8 всевозможных горизонтальных полосок 1×3 из трёх квадратиков 1×1, каждый из которых либо белый, либо серый (см. рисунок).
Разрешается переносить полоски в любых направлениях на любые (не обязательно целые) расстояния, не поворачивая и не переворачивая. Можно ли расположить полоски на столе так, чтобы все белые точки образовали многоугольник, ограниченный замкнутой несамопересекающейся ломаной, и все серые – тоже? (Полоски не должны перекрываться.)
Задача
67050
(#3)
|
|
Сложность: 4- Классы: 8,9,10,11
|
В прямоугольный треугольник с гипотенузой длины 1 вписали окружность. Через точки её касания с его катетами провели прямую.
Отрезок какой длины может высекать на этой прямой окружность, описанная около исходного треугольника?
Задача
67051
(#4)
|
|
Сложность: 4 Классы: 8,9,10,11
|
На доске написано число 7. Петя и Вася по очереди приписывают к текущему числу по одной цифре, начинает Петя. Цифру можно приписать в начало числа (кроме нуля), в его конец или между любыми двумя цифрами. Побеждает тот, после чьего хода число на доске станет точным квадратом. Может ли кто-нибудь гарантированно победить, как бы ни играл соперник?
Задача
67052
(#5)
|
|
Сложность: 4 Классы: 8,9,10,11
|
Параллелограмм ABCD разделён диагональю BD на два равных треугольника. В треугольник ABD вписан правильный шестиугольник так, что две его соседние стороны лежат на AB и AD, а одна из вершин – на BD. В треугольник CBD вписан правильный шестиугольник так, что две его соседние вершины лежат на CB и CD, а одна из сторон – на BD. Какой из шестиугольников больше?
Страница: 1 2 >> [Всего задач: 7]