ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Диагонали прямоугольника $ABCD$ пересекаются в точке $E$. Окружность с центром в точке $E$ лежит внутри прямоугольника. Из вершин $C$, $D$, $A$ проведены касательные к окружности $CF$, $DG$, $AH$, причем $CF$ пересекает $DG$ в точке $I$, $EI$ пересекает $AD$ в точке $J$, а прямые $AH$ и $CF$ пересекаются в точке $L$. Докажите, что отрезок $LJ$ перпендикулярен $AD$.

   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 67219

Темы:   [ Центральная симметрия (прочее) ]
[ Четность и нечетность ]
[ Топология (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Замкнутая, возможно, самопересекающаяся ломаная симметрична относительно не лежащей на ней точки $O$. Докажите, что число оборотов ломаной вокруг $O$ нечётно. (Числом оборотов вокруг $O$ называется сумма ориентированных углов $$\angle A_1OA_2+\angle A_2OA_3+\ldots+\angle A_{n-1}OA_n+\angle A_nOA_1,$$ делённая на $2\pi$.)
Прислать комментарий     Решение


Задача 67218

Темы:   [ Трапеции (прочее) ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 3+
Классы: 8,9,10

В трапеции $ABCD$ основание $AD$ вдвое больше основания $BC$, а угол $C$ в полтора раза больше угла $A$. Диагональ $AC$ делит угол $C$ на два угла. Определите, какой из них больше?
Прислать комментарий     Решение


Задача 67220

Тема:   [ Теорема синусов ]
Сложность: 3+
Классы: 9,10,11

Автор: Матвеев А.

Дан выпуклый четырёхугольник $ABCD$. Точки $X$ и $Y$ лежат на продолжениях за точку $D$ сторон $CD$ и $AD$ соответственно, причем $DX=AB$ и $DY=BC$. Аналогично, точки $Z$ и $T$ лежат на продолжениях за точку $B$ сторон $CB$ и $AB$, причем $BZ=AD$ и $BT=DC$. Пусть $M_1$ – середина $XY$, $M_2$ – середина $ZT$. Докажите, что прямые $DM_1$, $BM_2$ и $AC$ пересекаются в одной точке.
Прислать комментарий     Решение


Задача 67206

Темы:   [ Вписанные и описанные окружности ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 3+
Классы: 8,9,10

Пусть $L$ – середина меньшей дуги $AC$ описанной окружности остроугольного треугольника $ABC$. Из вершины $B$ на касательную к описанной окружности, проведённую в точке $L$, опустили перпендикуляр $BP$. Докажите, что точки $P$, $L$ и середины сторон $AB$ и $BC$ лежат на одной окружности.
Прислать комментарий     Решение


Задача 67207

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Диагонали прямоугольника $ABCD$ пересекаются в точке $E$. Окружность с центром в точке $E$ лежит внутри прямоугольника. Из вершин $C$, $D$, $A$ проведены касательные к окружности $CF$, $DG$, $AH$, причем $CF$ пересекает $DG$ в точке $I$, $EI$ пересекает $AD$ в точке $J$, а прямые $AH$ и $CF$ пересекаются в точке $L$. Докажите, что отрезок $LJ$ перпендикулярен $AD$.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .