ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
года:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В школе все ученики — отличники, хорошисты либо троечники. В круг встали 99 учеников. У каждого среди трёх соседей слева есть хотя бы один троечник, среди пяти соседей справа — хотя бы один отличник, а среди четырёх соседей — двух слева и двух справа — хотя бы один хорошист. Может ли в этом круге быть поровну отличников и троечников?

   Решение

Задачи

Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 381]      



Задача 67283

Темы:   [ Текстовые задачи (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
Сложность: 4
Классы: 6,7,8

В школе все ученики — отличники, хорошисты либо троечники. В круг встали 99 учеников. У каждого среди трёх соседей слева есть хотя бы один троечник, среди пяти соседей справа — хотя бы один отличник, а среди четырёх соседей — двух слева и двух справа — хотя бы один хорошист. Может ли в этом круге быть поровну отличников и троечников?
Прислать комментарий     Решение


Задача 66384

Темы:   [ Разрезания (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 7,8,9

Фигурки из четырёх клеток называются тет- рамино. Они бывают пяти видов (см. рис.). Существует ли такая фигура, что при любом выборе вида тетрамино эту фигуру можно составить, используя тетраминошки только выбранного вида? (Переворачивать тетраминошки можно.)

Прислать комментарий     Решение

Задача 66385

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 4
Классы: 7,8,9

Робин Гуд взял в плен семерых богачей и потребовал выкуп. Слуга каждого богача принёс кошелёк с золотом, и все они выстроились в очередь перед шатром, чтобы отдать выкуп. Каждый заходящий в шатер слуга кладёт принесённый им кошелёк на стол в центре шатра и, если такого или большего по тяжести кошелька ранее никто не приносил, богача отпускают вместе со слугой. Иначе слуге велят принести ещё один кошелёк, который был бы тяжелее всех, лежащих в этот момент на столе. Сходив за очередным кошельком, слуга становится в конец очереди. Походы за кошельками занимают у всех одинаковое время, поэтому очерёдность захода в шатёр не сбивается.

Когда Робин Гуд отпустил всех пленников, у него на столе оказалось: а) 28; б) 27 кошельков. Каким по счёту стоял в исходной очереди слуга богача, которого отпустили последним?

Прислать комментарий     Решение

Задача 66517

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 6,7,8

Максим сложил на столе из 9 квадратов и 19 равносторонних треугольников (не накладывая их друг на друга) многоугольник. Мог ли периметр этого многоугольника оказаться равным 15 см, если стороны всех квадратов и треугольников равны 1 см?
Прислать комментарий     Решение


Задача 66518

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 4

В ряд лежат 100 монет, часть – вверх орлом, а остальные – вверх решкой. За одну операцию разрешается выбрать семь монет, лежащих через равные промежутки (т.е. семь монет, лежащих подряд, или семь монет, лежащих через одну, и т.д.), и все семь монет перевернуть. Докажите, что при помощи таких операций можно все монеты положить вверх орлом.
Прислать комментарий     Решение


Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 381]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .