Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
года:
Фильтр
Сложность с по   Класс с по  
Выбрано 19 задач
Версия для печати
Убрать все задачи

Сторона основания правильной четырёхугольной пирамиды равна 8, а высота равна 3. Найдите площадь сечения пирамиды плоскостью, проходящей через одну из сторон основания и середину противоположного бокового ребра.

Вниз   Решение


Радиус окружности равен 25; две параллельные хорды равны 14 и 40. Найдите расстояние между ними.

ВверхВниз   Решение


Сторона основания правильной четырёхугольной пирамиды равна a , боковая грань образует с плоскостью основания угол 60o . Найдите радиус описанной сферы.

ВверхВниз   Решение


Шестизначное число делится на 37 и имеет хотя бы две различные цифры. Его первая и четвёртая цифры – не нули.
Докажите, что, переставив цифры в данном числе, можно получить другое число, тоже кратное 37 и не начинающееся с нуля.

ВверхВниз   Решение


Сторона основания правильной треугольной пирамиды равна a , а расстояние между противоположными рёбрами равно . Найдите радиус описанной сферы.

ВверхВниз   Решение


На сторонах AB, BC, CD и DA четырёхугольника ABCD отмечены соответственно точки M, N, P и Q так, что  AM = CP,  BN = DQ,  BM = DP,  NC = QA.  Докажите, что ABCD и MNPQ – параллелограммы.

ВверхВниз   Решение


а) Каждые две из шести ЭВМ соединены своим проводом. Укажите, как раскрасить каждый из этих проводов в один из пяти цветов так, чтобы из каждой ЭВМ выходило пять проводов разного цвета.
б) Каждые две из девяти ЭВМ соединены своим проводом. Можно ли раскрасить каждый из этих проводов в один из восьми цветов так, чтобы из каждой ЭВМ выходило восемь проводов разного цвета?

ВверхВниз   Решение


30 команд участвуют в розыгрыше первенства по футболу.
Доказать, что в любой момент состязаний имеются две команды, сыгравшие к этому моменту одинаковое число матчей.

ВверхВниз   Решение


Существуют ли  а) 5,  б) 6 простых чисел, образующих арифметическую прогрессию?

ВверхВниз   Решение


Перпендикуляр, опущенный из вершины прямоугольника на диагональ, делит прямой угол на две части в отношении  1 : 3.
Найдите угол между этим перпендикуляром и другой диагональю.

ВверхВниз   Решение


На сторонах AC и BC треугольника ABC взяты соответственно точки M и N, причём  MN || AB  и  MN = AM.
Найдите угол BAN, если  ∠B = 45°  и  ∠C = 60°.

ВверхВниз   Решение


Числа a и b таковы, что первое уравнение системы
{ cos x=ax+b
sin x+a=0

имеет ровно два решения. Докажите, что система имеет хотя бы одно решение.

ВверхВниз   Решение


Сторона основания правильной четырёхугольной пирамиды равна a , а расстояние между диагональю основания и скрещивающимся с ней боковым ребром равно . Найдите радиус описанной сферы.

ВверхВниз   Решение


Сторона основания правильной треугольной пирамиды равна a , а расстояние между противоположными рёбрами равно . Найдите радиус вписанной сферы.

ВверхВниз   Решение


Найдите натуральное число, большее единицы, которое встречается в треугольнике Паскаля
  а) больше трёх раз.
  б) больше четырёх раз.

ВверхВниз   Решение


Лабиринт для мышей (см. рисунок) представляет собой квадрат 5 × 5 метров, мыши могут бегать только по дорожкам. На двух перекрёстках положили по одинаковому куску сыра (обозначены крестиками). На другом перекрёстке сидит мышка (обозначена кружочком). Она чует, где сыр, но до обоих кусочков ей нужно пробежать одинаковое расстояние. Поэтому она не знает, какой кусочек выбрать, и задумчиво сидит на месте.

а) Отметьте ещё пять перекрёстков, где могла бы задумчиво сидеть мышка (откуда до обоих кусочков сыра ей нужно пробежать одинаковое расстояние).

б) Придумайте, на каких двух перекрёстках можно положить по куску сыра так, чтобы подходящих для задумчивой мышки перекрёстков оказалось как можно больше. (Доказательство максимальности от участников не требовалось)

ВверхВниз   Решение


Докажите, что в прямоугольной трапеции разность квадратов диагоналей равна разности квадратов оснований.

ВверхВниз   Решение


Двое по очереди ломают шоколадку 6×8. За ход разрешается сделать прямолинейный разлом любого из кусков вдоль углубления. Проигрывает тот, кто не сможет сделать ход. Кто выиграет в этой игре?

ВверхВниз   Решение


В записи $12345678 = 1$ вставьте знаки умножения и деления между некоторыми цифрами так, чтобы равенство стало верным.

Вверх   Решение

Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 393]      



Задача 67382

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 3
Классы: 5,6,7

В записи $12345678 = 1$ вставьте знаки умножения и деления между некоторыми цифрами так, чтобы равенство стало верным.
Прислать комментарий     Решение


Задача 67388

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 5,6,7,8

Квадрат $10\times10$ клеток надо покрыть полосками $1\times9$ клеток. Сделайте это так, чтобы каждая клетка была покрыта одной или двумя полосками, но никакой прямоугольник $1\times2$ не был покрыт в два слоя. (Полоски кладут по линиям сетки горизонтально или вертикально, полоски не должны выходить за границу квадрата.)
Прислать комментарий     Решение


Задача 67389

Темы:   [ Текстовые задачи (прочее) ]
[ Перебор случаев ]
[ Принцип Дирихле (прочее) ]
Сложность: 3
Классы: 5,6,7,8

Автор: Русских И.

Катя каждый день ест на завтрак либо кашу, либо яичницу, либо сырники, но никогда не ест два дня подряд одно и то же. В течение двух недель Катя записывала, чем она завтракала. Оказалось, что сырники она ела в два раза чаще, чем кашу. Сколько раз за эти две недели Катя завтракала яичницей?
Прислать комментарий     Решение


Задача 86089

Тема:   [ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 6,7

  На автобусе ездил Андрей
  На кружок и обратно домой,
  Заплатив 115 рублей,
  Покупал он себе проездной.
  В январе он его не достал,
  И поэтому несколько дней
  У шофёра билет покупал
  Он себе за 15 рублей.
  А в иной день кондуктор с него
  Брал 11 только рублей.
  Возвращаясь с кружка своего
  Всякий раз шёл пешком наш Андрей.
  За январь сколько денег ушло,
  Посчитал бережливый Андрей:
  С удивлением он получил
  Аккурат 115 рублей!
  Сосчитайте теперь поскорей,
  Сколько раз был кружок в январе?

Прислать комментарий     Решение

Задача 86090

Темы:   [ Четность и нечетность ]
[ Теория игр (прочее) ]
Сложность: 3
Классы: 6,7

Лиса и два медвежонка делят 100 конфет. Лиса раскладывает конфеты на три кучки; кому какая достанется - определяет жребий. Лиса знает, что если медвежатам достанется разное количество конфет, то они попросят её уравнять их кучки, и тогда она заберёт излишек себе. После этого все едят доставшиеся им конфеты.
  а) Придумайте, как Лисе разложить конфеты по кучкам так, чтобы съесть ровно 80 конфет (ни больше, ни меньше).
  б) Может ли Лиса сделать так, чтобы в итоге съесть ровно 65 конфет?

Прислать комментарий     Решение

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 393]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .