ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Петя загадал положительную несократимую дробь $x = \frac{m}{n}$. Можно назвать положительную дробь $y$, меньшую $1$, и Петя назовёт числитель несократимой дроби, равной сумме $x+y$. Как за два таких действия гарантированно узнать $x$? |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 54]
Квадрат разбили на несколько прямоугольников так, что центры прямоугольников образуют выпуклый многоугольник.
Дан выпуклый четырехугольник $ABCD$ площади $S$. Внутри каждой его стороны отмечено по точке и эти точки последовательно соединены отрезками, так что $ABCD$ разбивается на меньший четырехугольник и $4$ треугольника. Докажите, что хотя бы у одного из этих треугольников площадь не превосходит $\frac{S}{8}$.
Есть $N$ удавов, их пасти имеют размеры $1$ см, $2$ см, $\dots$, $N$ см. Каждый удав может заглотить яблоко любого диаметра (в см), не превосходящего размер его пасти. Но по внешнему виду нельзя определить, какая у кого пасть. Вечером смотритель может выдать каждому удаву сколько хочет яблок каких хочет размеров, и за ночь удав заглотит все те из них, что влезают ему в пасть. Какое минимальное количество яблок суммарно смотритель должен вечером выдать удавам, чтобы утром по результату он гарантированно определил размер пасти каждого удава?
В математическом кружке $45$ школьников, некоторые дружат. Как ни разбивай их на тройки, в какой-то тройке все будут друг с другом дружить. Докажите, что всех школьников можно разбить на тройки так, чтобы в каждой тройке хотя бы какие-то двое дружили друг с другом.
Петя загадал положительную несократимую дробь $x = \frac{m}{n}$. Можно назвать положительную дробь $y$, меньшую $1$, и Петя назовёт числитель несократимой дроби, равной сумме $x+y$. Как за два таких действия гарантированно узнать $x$?
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 54]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке