ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Известно, что разность между наибольшим и наименьшим из чисел x1, x2, x3, ..., x9, x10 равна 1. Какой  а) наибольшей;  б) наименьшей может быть разность между наибольшим и наименьшим из 10 чисел x1,  ½ (x1 + x2),  ⅓ (x1 + x2 + x3),  ...,  1/10 (x1 + x2 + ... + x10)?
в) Каков будет ответ, если чисел не 10, а n?

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 73741  (#М206)

Темы:   [ Деление с остатком ]
[ Принцип Дирихле (прочее) ]
[ Десятичная система счисления ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4-
Классы: 9,10,11

Дана бесконечная последовательность цифр. Докажите, что для любого натурального числа n, взаимно простого с числом 10, можно указать такую группу стоящих подряд цифр последовательности, что записываемое этими цифрами число делится на n.

Прислать комментарий     Решение

Задача 73742  (#М207)

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ Отношение площадей подобных треугольников ]
[ Наибольшая или наименьшая длина ]
[ Поворот помогает решить задачу ]
[ Подобные треугольники (прочее) ]
Сложность: 5+
Классы: 9,10,11

Даны два треугольника A1A2A3 и B1B2B3. "Опишите" вокруг треугольника A1A2A3 треугольник M1M2M3 наибольшей площади, подобный треугольнику B1B2B3 (вершина A1 должна лежать на прямой M2M3, вершина A2 – на прямой A1A3, вершина A3 – на прямой A1A2).

Прислать комментарий     Решение

Задача 73743  (#М208)

Темы:   [ Средние величины ]
[ Линейные неравенства и системы неравенств ]
Сложность: 4
Классы: 9,10,11

Известно, что разность между наибольшим и наименьшим из чисел x1, x2, x3, ..., x9, x10 равна 1. Какой  а) наибольшей;  б) наименьшей может быть разность между наибольшим и наименьшим из 10 чисел x1,  ½ (x1 + x2),  ⅓ (x1 + x2 + x3),  ...,  1/10 (x1 + x2 + ... + x10)?
в) Каков будет ответ, если чисел не 10, а n?

Прислать комментарий     Решение

Задача 73744  (#М209)

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Неравенства с углами ]
[ Неравенство Коши ]
Сложность: 5
Классы: 9,10,11

Для любого треугольника можно вычислить сумму квадратов тангенсов половин его углов. Докажите, что эта сумма
  а) меньше 2 для любого остроугольного треугольника;
  б) не меньше 2 для любого тупоугольного треугольника, величина тупого угла которого больше или равна  2 arctg 4/3;  а среди треугольников с тупым углом, меньшим  2 arctg 4/3,  имеются и такие, сумма квадратов тангенсов половин углов которых больше 2, и такие, сумма квадратов тангенсов половин углов которых меньше 2.

Прислать комментарий     Решение

Задача 79258  (#М210)

Темы:   [ Процессы и операции ]
[ Разложение в произведение транспозиций и циклов ]
[ Теория алгоритмов (прочее) ]
[ Правило произведения ]
[ Оценка + пример ]
Сложность: 5
Классы: 9,10,11

Имеется 100-значное число, состоящее из единиц и двоек. Разрешается в любых десяти последовательных цифрах поменять местами первые пять с пятью следующими. Два таких числа называются похожими, если одно из них получается из другого несколькими такими операциями. Какое наибольшее количество попарно непохожих чисел можно выбрать?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .