Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Различные числа a, b и c таковы, что уравнения  x² + ax + 1 = 0  и  x² + bx + c = 0  имеют общий действительный корень. Кроме того, общий действительный корень имеют уравнения  x² + x + a = 0  и  x² + cx + b = 0.  Найдите сумму  a + b + c.

Вниз   Решение


В квадрате 7×7 клеток закрасьте некоторые клетки так, чтобы в каждой строке и в каждом столбце оказалось ровно по три закрашенных клетки.

ВверхВниз   Решение


Числовое множество M, содержащее 2003 различных числа, таково, что для каждых двух различных элементов a, b из M число
   рационально. Докажите, что для любого a из M число    рационально.

ВверхВниз   Решение


Окружности $ \alpha$, $ \beta$ и $ \gamma$ имеют одинаковые радиусы и касаются сторон углов A, B и C треугольника ABC соответственно. Окружность $ \delta$ касается внешним образом всех трех окружностей $ \alpha$, $ \beta$ и $ \gamma$. Докажите, что центр окружности $ \delta$ лежит на прямой, проходящей через центры вписанной и описанной окружностей треугольника ABC.

ВверхВниз   Решение


Даны две точки A и B и окружность. Найти на окружности точку X так, чтобы прямые AX и BX отсекли на окружности хорду CD, параллельную данной прямой MN.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 76455  (#1)

Тема:   [ Разложение на множители ]
Сложность: 4-
Классы: 8,9

Разложить на целые рациональные множители выражение  a10 + a5 + 1.

Прислать комментарий     Решение

Задача 76456  (#2)

Темы:   [ Свойства коэффициентов многочлена ]
[ Четность и нечетность ]
[ Целочисленные и целозначные многочлены ]
[ Арифметика остатков (прочее) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

Даны два многочлена от переменной x с целыми коэффициентами. Произведение их есть многочлен от переменной x с чётными коэффициентами, не все из которых делятся на 4. Доказать, что в одном из многочленов все коэффициенты чётные, а в другом – хоть один нечётный.

Прислать комментарий     Решение

Задача 76457  (#3)

Тема:   [ Окружности (построения) ]
Сложность: 5
Классы: 8,9

Даны две точки A и B и окружность. Найти на окружности точку X так, чтобы прямые AX и BX отсекли на окружности хорду CD, параллельную данной прямой MN.
Прислать комментарий     Решение


Задача 76458  (#4)

Темы:   [ Арифметика остатков (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 3+
Классы: 8,9

Найти остаток от деления на 7 числа  1010 + 10102 + 10103 + ... + 101010.

Прислать комментарий     Решение

Задача 76459  (#5)

Тема:   [ Правильная пирамида ]
Сложность: 5
Классы: 10,11

Дана правильная пирамида. Из произвольной точки P её основания восставлен перпендикуляр к плоскости основания. Доказать, что сумма отрезков от точки P до точек пересечения перпендикуляра с плоскостями граней пирамиды не зависит от выбора точки P на основании.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .