ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Варианты:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольнике ABC, площадь которого равна 1, на медиане BK
взята точка M, причём MK = ¼ BK. Прямая AM пересекает сторону BC в точке L. Основанием наклонного параллелепипеда служит ромб, сторона которого равна 60. Плоскость диагонального сечения, проходящая через большую диагональ основания, перпендикулярна плоскости основания. Площадь этого сечения равна 7200. Найдите меньшую диагональ основания, если боковое ребро равно 80 и образует с плоскостью основания угол 60o . Многоугольник, описанный около окружности радиуса r,
разрезан на треугольники (произвольным образом). Докажите, что сумма
радиусов вписанных окружностей этих треугольников больше r.
Длины сторон треугольника образуют арифметическую
прогрессию. Докажите, что радиус вписанной окружности
равен трети одной из высот треугольника.
Через точку M, лежащую внутри параллелограмма ABCD,
проведены прямые PR и QS, параллельные сторонам BC и AB
(точки P, Q, R и S лежат на сторонах AB, BC, CD и DA
соответственно). Докажите, что прямые BS, PD и MC пересекаются в
одной точке.
В треугольнике $ABC$ $I$ – центр вписанной окружности, вневписанная окружность с центром $I_A$ касается стороны $BC$ в точке $A'$. Через $I$ проведена прямая $l\perp BI$. Оказалось, что $l$ пересекает $I_AA'$ в точке $K$, лежащей на средней линии, параллельной $BC$. Докажите, что $\angle B\leq 60^{\circ}$. Доказать, что квадрат любого простого числа p > 3 при делении на 12 даёт в остатке 1. Доказать, что многочлен с целыми коэффициентами a0xn + a1xn–1 + ... + an–1x + an, принимающий при x = 0 и x = 1 нечётные значения, не имеет целых корней. |
Страница: << 1 2 3 4 5 >> [Всего задач: 21]
Доказать, что произведение четырех последовательных целых чисел в сумме с единицей даёт полный квадрат.
Доказать, что многочлен с целыми коэффициентами a0xn + a1xn–1 + ... + an–1x + an, принимающий при x = 0 и x = 1 нечётные значения, не имеет целых корней.
Решить уравнение:
| x + 1| - | x| + 3| x - 1| - 2| x - 2| = x + 2.
Доказать, что квадрат любого простого числа p > 3 при делении на 12 даёт в остатке 1.
Решить в целых числах уравнение x + y = x² – xy + y².
Страница: << 1 2 3 4 5 >> [Всего задач: 21]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке