ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дан выпуклый пятиугольник ABCDE. Сторонами, противоположными вершинам A, B, C, D, E, мы называем соответственно отрезки CD, DE, EA, AB, BC. Докажите, что если произвольную точку M, лежащую внутри пятиугольника, соединить прямыми со всеми его вершинами, то из этих прямых либо ровно одна, либо ровно три, либо ровно пять пересекают стороны пятиугольника, противоположные вершинам, через которые они проходят. |
Страница: 1 [Всего задач: 5]
Определить коэффициенты, которые будут стоять при x17 и x18 после раскрытия скобок и приведения подобных членов в выражении (1 + x5 + x7)20.
Какой остаток даёт x + x³ + x9 + x27 + x81 + x243 при делении на x – 1?
Докажите, что каково бы ни было целое число n, среди чисел n, n + 1, n + 2, n + 3, n + 4 есть хотя бы одно число взаимно простое с остальными четырьмя из этих чисел.
Дан выпуклый пятиугольник ABCDE. Сторонами, противоположными вершинам A, B, C, D, E, мы называем соответственно отрезки CD, DE, EA, AB, BC. Докажите, что если произвольную точку M, лежащую внутри пятиугольника, соединить прямыми со всеми его вершинами, то из этих прямых либо ровно одна, либо ровно три, либо ровно пять пересекают стороны пятиугольника, противоположные вершинам, через которые они проходят.
Точка O является точкой пересечения высот остроугольного треугольника ABC. Докажите, что 3 окружности, проходящие: первая через точки O, A, B, вторая — через точки O, B, C и третья — через точки O, C, A, равны между собой.
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке