|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Треугольники ABC и ABC1 – равнобедренные с общим основанием AB. Докажите равенство треугольников ACC1 и BCC1. Доказать, что существует такое натуральное число n, большее 1000, что сумма цифр числа 2n больше суммы цифр числа 2n+1. Пусть m и n – целые числа. Докажите, что mn(m + n) – чётное число. В плоскости расположено 11 шестерёнок таким образом, что первая сцеплена со второй, вторая – с третьей, ..., одиннадцатая – с первой. |
Страница: 1 2 >> [Всего задач: 6]
В плоскости расположено 11 шестерёнок таким образом, что первая сцеплена со второй, вторая – с третьей, ..., одиннадцатая – с первой.
Можно ли замостить доминошками 1×2 шахматную доску 8×8, из которой
вырезаны
Может ли прямая, не содержащая вершин замкнутой 11-звенной ломаной, пересекать все её звенья?
а) Докажите, что число точек пересечения двух замкнутых ломаных на плоскости, находящихся в общем положении, чётно.
Страница: 1 2 >> [Всего задач: 6] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|