Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Сколько существует последовательностей из единиц и двоек, сумма всех элементов которых равна n? Например, если  n = 4,  то таких последовательностей пять: 1111,  112,  121,  211,  22.

Вниз   Решение


Докажите тождества:

  а)  

  б)  

  в)  

  г)  

  д)  

(Попробуйте доказать эти тождества тремя разными способами: пользуясь тем, что      – это количество k-элементных подмножеств в множестве из n элементов; исходя из того, что     – это коэффициент при xk у многочлена  (1 + x)n;  пользуясь "шахматным городом" из задачи 60395).

ВверхВниз   Решение


Слово – любая конечная последовательность букв русского алфавита. Выясните, сколько различных слов можно составить из слов
  а) ВЕКТОР;
  б) ЛИНИЯ;
  в) ПАРАБОЛА;
  г) БИССЕКТРИСА;
  д) МАТЕМАТИКА.

ВверхВниз   Решение


У мамы два яблока, три груши и четыре апельсина. Каждый день в течение девяти дней подряд она дает сыну один из оставшихся фруктов.
Сколькими способами это может быть сделано?

ВверхВниз   Решение


              1              
            1   1            
          1   1   1          
        1   2   2   1        
      1   3   6   3   1      
    1   5   15   15   5   1    
  1   8   40   60   40   8   1  
1   13   104   260   260   104   13   1

Данная таблица аналогична треугольнику Паскаля и состоит из фибоначчиевых коэффициентов     определяемых равенством

  а) Докажите, что фибоначчиевы коэффициенты обладают свойством симметрии  

  б) Найдите формулу, которая выражает коэффициент     через     и     (аналогичную равенству б) из задачи 60413).

  в) Объясните, почему все фибоначчиевы коэффициенты являются целыми числами.

ВверхВниз   Решение


На прямоугольном листе бумаги нарисован круг, внутри которого Миша мысленно выбирает n точек, а Коля пытается их разгадать. За одну попытку Коля указывает на листе (внутри или вне круга) одну точку, а Миша сообщает Коле расстояние от нее до ближайшей неразгаданной точки. Если оно оказывается нулевым, то после этого указанная точка считается разгаданной. Коля умеет отмечать на листе точки, откладывать расстояния и производить построения циркулем и линейкой. Может ли Коля наверняка разгадать все выбранные точки менее, чем за (n+1)2 попыток?

ВверхВниз   Решение


Два равных диска насажены на одну ось. На окружности каждого из них по кругу на одинаковых расстояниях в произвольном порядке расставлены числа 1, 2, 3, ..., 20. Всегда ли можно повернуть один диск относительно другого так, чтобы никакие два одинаковых числа не стояли друг против друга?

ВверхВниз   Решение


Автор: Федоров А.

Два подмножества множества натуральных чисел называют конгруэнтными, если одно получается из другого сдвигом на целое число. (Например, множества чётных и нечётных чисел конгруэнтны.) Можно ли разбить множество натуральных чисел на бесконечное число (не пересекающих друг друга) бесконечных конгруэнтных подмножеств?

ВверхВниз   Решение


В квадрате со стороной длины 1 расположена ломаная без самопересечений, длина которой не меньше 200. Доказать, что найдётся прямая, параллельная одной из сторон квадрата, пересекающая ломаную не менее чем в 101-й точке.

ВверхВниз   Решение


На окружности расставлено n цифр, отличных от 0. Сеня и Женя переписали себе в тетрадки  n – 1  цифру, читая их по часовой стрелке. Оказалось, что хотя они начали с разных мест, записанные ими (n–1)-значные числа совпали. Докажите, что окружность можно разрезать на несколько дуг так, чтобы записанные на дугах цифры образовывали одинаковые числа.

ВверхВниз   Решение


В треугольнике известны две стороны a и b. Какой должна быть третья сторона, чтобы наименьший угол треугольника имел наибольшую величину?

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 37]      



Задача 78119

Темы:   [ Наименьший или наибольший угол ]
[ Вписанные и описанные окружности ]
Сложность: 4+
Классы: 9

В неравносторонний треугольник вписана окружность, точки касания которой со сторонами приняты за вершины второго треугольника. В этот второй треугольник снова вписана окружность, точки касания которой являются вершинами третьего треугольника; в него вписана третья окружность и т.д. Докажите, что в образовавшейся последовательности треугольников нет двух подобных.
Прислать комментарий     Решение


Задача 78126

Темы:   [ Квадратные уравнения и системы уравнений ]
[ Четность и нечетность ]
[ Квадратный трехчлен (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 4+
Классы: 9,10,11

Найти все действительные решения системы  

Прислать комментарий     Решение

Задача 78105

Темы:   [ Наименьшее или наибольшее расстояние (длина) ]
[ Неравенство треугольника ]
[ Произвольные многоугольники ]
Сложность: 4+
Классы: 9,10

Плоский многоугольник A1A2...An составлен из n твёрдых стержней, соединенных шарнирами. Доказать, что если n > 4, то его можно деформировать в треугольник.
Прислать комментарий     Решение


Задача 78115

Тема:   [ Экстремальные свойства треугольника (прочее) ]
Сложность: 4+
Классы: 9

В треугольнике известны две стороны a и b. Какой должна быть третья сторона, чтобы наименьший угол треугольника имел наибольшую величину?
Прислать комментарий     Решение


Задача 78117

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4+
Классы: 9

Внутри равностороннего треугольника ABC находится точка O. Прямая OG, соединяющая O с центром тяжести (точкой пересечения медиан) G треугольника, пересекает стороны треугольника (или их продолжения) в точках A', B', C'. Доказать, что

$\displaystyle {\frac{OA'}{GA'}}$ + $\displaystyle {\frac{OB'}{GB'}}$ + $\displaystyle {\frac{OC'}{GC'}}$ = 3.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 37]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .