ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Провести из точки O n лучей на плоскости так, чтобы сумма всех попарных углов между ними была наибольшей. (Рассматриваются только углы, не превышающие 180o.)

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



Задача 78142

Темы:   [ Поворот и винтовое движение ]
[ Прямые и плоскости в пространстве (прочее) ]
Сложность: 4-
Классы: 10,11

Какое наибольшее число осей симметрии может иметь пространственная фигура, состоящая из трёх прямых, из которых никакие две не параллельны и не совпадают?
Прислать комментарий     Решение


Задача 78146

Темы:   [ Уравнения в целых числах ]
[ Четность и нечетность ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 4-
Классы: 9,10,11

Доказать, что  11551958 + 341958n²,  где n – целое.

Прислать комментарий     Решение

Задача 78158

Темы:   [ Покрытия ]
[ Геометрические неравенства (прочее) ]
Сложность: 4-
Классы: 9,10

Обозначим через a наибольшее число непересекающихся кругов диаметра 1, центры которых лежат внутри многоугольника M, через b — наименьшее число кругов радиуса 1, которыми можно покрыть весь многоугольник M. Какое число больше: a или b?
Прислать комментарий     Решение


Задача 78160

Темы:   [ Угол (экстремальные свойства) ]
[ Индукция в геометрии ]
Сложность: 4-
Классы: 10,11

Провести из точки O n лучей на плоскости так, чтобы сумма всех попарных углов между ними была наибольшей. (Рассматриваются только углы, не превышающие 180o.)
Прислать комментарий     Решение


Задача 78144

Темы:   [ Индукция в геометрии ]
[ Процессы и операции ]
Сложность: 4
Классы: 9,10,11

Отрезок длиной 3n разбивается на три равные части. Первая и третья из них называются отмеченными. Каждый из отмеченных отрезков разбивается на три части, из которых первая и третья снова называются отмеченными и т.д. до тех пор, пока не получатся отрезки длиной 1. Концы всех отмеченных отрезков называются отмеченными точками. Доказать, что для любого целого k(1$ \le$k$ \le$3n) можно найти две отмеченные точки, расстояние между которыми равно k.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .