ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На хоккейном поле лежат три шайбы А, В и С. Хоккеист бьёт по одной из них так, что она пролетает между двумя другими.
Так он делает 25 раз. Могут ли после этого шайбы оказаться на исходных местах?

Вниз   Решение


Имеется трёхзначное число abc, берём cba и вычтем из большего меньшее. Получим число  a1b1c1,  сделаем с ним то же самое и т.д.
Доказать, что на каком-то шаге мы получим или число 495, или 0. Случай  a1 = 0  допускается.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 78238

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8,9

Доказать, что если n чётно, то числа 1, 2, 3, ..., n² можно таким образом расположить в квадратную таблицу n×n, чтобы суммы чисел, стоящих в каждом столбце, были одинаковы.

Прислать комментарий     Решение

Задача 78266

Темы:   [ Деревья ]
[ Индукция в геометрии ]
Сложность: 3
Классы: 10,11

n точек соединены отрезками так, что каждая точка с чем-нибудь соединена и нет таких двух точек, которые соединялись бы двумя разными путями.
Доказать, что общее число отрезков равно  n – 1.

Прислать комментарий     Решение

Задача 78239

Темы:   [ Признаки делимости на 3 и 9 ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9

Имеется трёхзначное число abc, берём cba и вычтем из большего меньшее. Получим число  a1b1c1,  сделаем с ним то же самое и т.д.
Доказать, что на каком-то шаге мы получим или число 495, или 0. Случай  a1 = 0  допускается.

Прислать комментарий     Решение

Задача 78245

Тема:   [ Индукция в геометрии ]
Сложность: 3+
Классы: 9,10

См. задачу 3 для 7 класса.
Прислать комментарий     Решение


Задача 78246

Темы:   [ Четность и нечетность ]
[ Шахматные доски и шахматные фигуры ]
[ Шахматная раскраска ]
[ Обход графов ]
Сложность: 3+
Классы: 7,8,9

Дана ладья, которой разрешается делать ходы только длиной в одну клетку. Доказать, что она может обойти все клетки прямоугольной шахматной доски, побывав на каждой клетке ровно один раз, и вернуться в начальную клетку тогда и только тогда, когда число клеток на доске чётно.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .