ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Имеется 120-значное число. Его первые 12 цифр переставляются всеми возможными способами. Из полученных таким образом 120-значных чисел наугад выбирают 120 чисел. Доказать, что их сумма делится на 120.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



Задача 78629

Темы:   [ Принцип Дирихле (прочее) ]
[ Перебор случаев ]
Сложность: 3+
Классы: 7,8,9

Можно ли расставить на окружности числа 1, 2...12 так, чтобы разность между двумя рядом стоящими числами была 3, 4 или 5?
Прислать комментарий     Решение


Задача 78603

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Метод ГМТ ]
Сложность: 4-
Классы: 9,10

Дан треугольник ABC. Найти геометрическое место таких точек M, что треугольники ABM и BCM – равнобедренные.

Прислать комментарий     Решение

Задача 78604

Темы:   [ Уравнения в целых числах ]
[ Раскладки и разбиения ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4-
Классы: 9,10

Остап Бендер организовал в городе Фуксе раздачу слонов населению. На раздачу явились 28 членов профсоюза и 37 не членов, причём Остап раздавал слонов поровну всем членам профсоюза и поровну – не членам. Оказалось, что существует лишь один способ такой раздачи (так, чтобы раздать всех слонов). Какое наибольшее число слонов могло быть у О. Бендера? (Предполагается, что каждому из пришедших достался хотя бы один слон.)

Прислать комментарий     Решение

Задача 78608

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
Сложность: 4-
Классы: 10,11

Имеется 120-значное число. Его первые 12 цифр переставляются всеми возможными способами. Из полученных таким образом 120-значных чисел наугад выбирают 120 чисел. Доказать, что их сумма делится на 120.

Прислать комментарий     Решение

Задача 78610

Темы:   [ Наименьший или наибольший угол ]
[ Геометрические неравенства (прочее) ]
Сложность: 4-
Классы: 10,11

Доказать, что в круге радиуса 1 нельзя найти более 5 точек, попарные расстояния между которыми все больше 1.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .