ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Число y получается из натурального числа x некоторой перестановкой его цифр. Докажите, что каково бы ни было x, Остап Бендер организовал в городе Фуксе раздачу слонов населению. На раздачу явились 28 членов профсоюза и 37 не членов, причём Остап раздавал слонов поровну всем членам профсоюза и поровну – не членам. Оказалось, что существует лишь один способ такой раздачи (так, чтобы раздать всех слонов). Какое наибольшее число слонов могло быть у О. Бендера? (Предполагается, что каждому из пришедших достался хотя бы один слон.) На клетчатой бумаге написана таблица, причём в каждой клетке стоит число, равное среднему арифметическому четырёх чисел, стоящих в соседних клетках. Все числа в таблице различны. Докажите, что наибольшее число стоит с края (то есть по крайней мере одна из соседних клеток отсутствует). В треугольнике $ABC$ точка $M$ – середина стороны $BC$, точка $E$ лежит внутри стороны $AC$, $BE \geqslant 2AM$. Докажите, что треугольник $ABC$ тупоугольный. На сторонах AB и CB треугольника ABC откладываются равные отрезки произвольной длины AD и CE. Найти геометрическое место середин отрезков DE. 2n = 10a + b. Доказать, что если n > 3, то ab делится на 6. (n, a и b – целые числа, b < 10.) Пусть a, b, c, d, l – целые числа. Докажите, что если дробь
Прибор для сравнения чисел logab и logcd (a, b, c, d > 1) работает по правилам: если b > a и d > c, то он переходит к сравнению чисел logab/a и logcd/c
если b < a и d < c, то он переходит к сравнению чисел logdc и logba; если (b − a)(d − c) ≤ 0, то он выдаёт ответ. Квадратная таблица из 49 клеток заполнена числами от 1 до 7 так, что в каждом столбце и в каждой строке встречаются все эти числа. Докажите, что если таблица симметрична относительно диагонали, идущей из левого верхнего угла в правый нижний, то на этой диагонали встречаются все эти числа. На окружности длины 15 выбрано n точек, так что для каждой имеется ровно одна выбранная точка на расстоянии 1 и ровно одна на расстоянии 2 (расстояние измеряется по окружности). Докажите, что n делится на 10. В десятичной записи положительного числа α отброшены все десятичные знаки, начиная с третьего знака после запятой (то есть взято приближение α с недостатком с точностью до 0, 01). Полученное число делится на α и частное снова округляется с недостатком с той же точностью. Какие числа при этом могут получиться? Доказать, что существует число q такое, что в десятичной записи числа q . 21000 нет ни одного нуля. |
Страница: 1 [Всего задач: 1]
Доказать, что существует число q такое, что в десятичной записи числа q . 21000 нет ни одного нуля.
Страница: 1 [Всего задач: 1]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке