Страница: 1 [Всего задач: 5]
Задача
78628
(#1)
|
|
Сложность: 4+ Классы: 9,10,11
|
Дана таблица n×n клеток и такие натуральные числа k и m > k, что m и n – k взаимно просты. Таблица заполняется следующим образом: пусть в некоторой строчке записаны числа a1, ..., ak, ak+1, ..., am, am+1, ..., an. Тогда в следующей строчке записываются те же числа, но в таком порядке: am+1, ..., an, ak+1, ..., am, a1, ..., ak. В первую строчку записываются (по порядку) числа 1, 2, ..., n. Доказать, что после заполнения таблицы в каждом столбце будут написаны все числа от 1 до n.
Задача
78625
(#2)
|
|
Сложность: 4- Классы: 10,11
|
На каждой стороне треугольника
ABC построено по квадрату во внешнюю сторону
(пифагоровы штаны). Оказалось, что внешние вершины всех квадратов лежат на
одной окружности. Доказать, что треугольник
ABC — равнобедренный.
Задача
78629
(#3)
|
|
Сложность: 3+ Классы: 7,8,9
|
Можно ли расставить на окружности числа
1, 2...12 так, чтобы разность между
двумя рядом стоящими числами была 3, 4 или 5?
Задача
78630
(#4)
|
|
Сложность: 5- Классы: 10,11
|
В восьми данных точках пространства установлено по прожектору, каждый из
которых может осветить в пространстве октант (трёхгранный угол со
взаимно-перпендикулярными сторонами). Доказать, что можно повернуть прожекторы
так, чтобы они осветили все пространство.
Задача
78631
(#5)
|
|
Сложность: 5- Классы: 9,10,11
|
Рассматриваются всевозможные
n-значные числа, составленные из цифр 1, 2 и
3. В конце каждого из этих чисел приписывается цифра 1, 2 или 3 так,
что к двум числам, у которых во всех разрядах стоят разные цифры, приписываются
разные цифры. Доказать, что найдется
n-значное число, в записи которого
участвует лишь одна единица и к которому приписывается единица.
Страница: 1 [Всего задач: 5]