Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Кружки, факультативы, спецкурсы:
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

На доске размером 8×8 двое по очереди закрашивают клетки так, чтобы не появлялось закрашенных уголков из трёх клеток. Проигрывает тот, кто не может сделать ход. Кто выигрывает при правильной игре?

Вниз   Решение


Теннисист для тренировки играет каждый день хотя бы одну партию; при этом, чтобы не перетрудиться, он играет не более 12 партий в неделю.
Докажите, что можно найти несколько таких подряд идущих дней, в течение которых теннисист сыграл ровно двадцать партий.

ВверхВниз   Решение


Бронзовые монеты в 1, 2, 3 и 5 коп. весят соответственно 1, 2, 3 и 5 г. Среди четырех бронзовых монет (по одной из каждого номинала) одна фальшивая — отличается от настоящих по весу. Как с помощью двух взвешиваний на чашечных весах без гирь определить фальшивую монету?

ВверхВниз   Решение


По кругу написано семь натуральных чисел. Докажите, что найдутся два соседних числа, сумма которых чётна.

ВверхВниз   Решение


Квадратный трёхчлен  x² + bx + c  имеет два действительных корня. Каждый из трёх его коэффициентов увеличили на 1.
Могло ли оказаться, что оба корня трёхчлена также увеличились на 1?

ВверхВниз   Решение


Сколько слов можно составить из пяти букв А и не более чем из трёх букв Б?

ВверхВниз   Решение


В стране Анчурии, где правит президент Мирафлорес, приблизилось время новых президентских выборов. В стране ровно 20 миллионов избирателей, из которых только один процент поддерживает Мирафлореса (регулярная армия Анчурии). Мирафлорес, естественно, хочет быть избранным, но, с другой стороны, он хочет, чтобы выборы были "демократическими". "Демократическим голосованием" Мирафлорес называет вот что: все избиратели разбиваются на равные группы; каждая из этих групп вновь разбивается на некоторое количество равных групп, причём большие группы могут разбиваться на разное количество меньших групп, затем эти группы снова разбиваются и т.д. В самых мелких группах выбирают представителя группы "выборщика" для голосования в большей группе: выборщики в этой большей группе выбирают выборщика для голосования в ещё большей группе и т.д. Наконец, представители самых больших групп выбирают президента. Мирафлорес делит избирателей на группы по своей воле и инструктирует своих сторонников, как им голосовать. Сможет ли он так организовать "демократические" выборы, чтобы его выбрали? (В каждой группе выборщики выбирают своего представителя простым большинством. При равенстве голосов побеждает оппозиция.)

Вверх   Решение

Задачи

Страница: << 123 124 125 126 127 128 129 >> [Всего задач: 644]      



Задача 104124

Темы:   [ Задачи на движение ]
[ Средние величины ]
Сложность: 4-
Классы: 7,8,9

Антон сбежал вниз по движущемуся эскалатору и насчитал 30 ступенек. Затем он решил пробежать вверх по тому же эскалатору с той же скоростью относительно эскалатора и насчитал 150 ступенек. Сколько ступенек он насчитал, спускаясь вместе с милиционером по неподвижному эскалатору?

Прислать комментарий     Решение

Задача 108403

Темы:   [ Ориентированные графы ]
[ Деревья ]
[ Раскраски ]
[ Связность и разложение на связные компоненты ]
[ Степень вершины ]
Сложность: 4-
Классы: 7,8,9

Выбежав после уроков на двор, каждый школьник кинул снежком ровно в одного другого школьника.
Докажите, что всех учащихся можно разбить на три команды так, что члены одной команды друг в друга снежками не кидали.

Прислать комментарий     Решение

Задача 32878

Темы:   [ Задачи на движение ]
[ Примеры и контрпримеры. Конструкции ]
[ Покрытия ]
Сложность: 4
Классы: 7

Улитка проснулась, доползла от гриба до родника и уснула. Путешествие заняло шесть часов. Улитка ползла то быстрее, то медленнее, останавливалась. За улиткой наблюдали несколько учёных. Известно, что:
  1) В каждый момент путешествия улитку наблюдал хотя бы один учёный.
  2) Каждый учёный наблюдал неспящую улитку в течение одного часа (без перерыва) и говорит, что за это время улитка проползла ровно один метр.
Каково наибольшее возможное расстояние от гриба до родника?

Прислать комментарий     Решение

Задача 78719

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Теория алгоритмов (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 4
Классы: 9,10,11

В стране Анчурии, где правит президент Мирафлорес, приблизилось время новых президентских выборов. В стране ровно 20 миллионов избирателей, из которых только один процент поддерживает Мирафлореса (регулярная армия Анчурии). Мирафлорес, естественно, хочет быть избранным, но, с другой стороны, он хочет, чтобы выборы были "демократическими". "Демократическим голосованием" Мирафлорес называет вот что: все избиратели разбиваются на равные группы; каждая из этих групп вновь разбивается на некоторое количество равных групп, причём большие группы могут разбиваться на разное количество меньших групп, затем эти группы снова разбиваются и т.д. В самых мелких группах выбирают представителя группы "выборщика" для голосования в большей группе: выборщики в этой большей группе выбирают выборщика для голосования в ещё большей группе и т.д. Наконец, представители самых больших групп выбирают президента. Мирафлорес делит избирателей на группы по своей воле и инструктирует своих сторонников, как им голосовать. Сможет ли он так организовать "демократические" выборы, чтобы его выбрали? (В каждой группе выборщики выбирают своего представителя простым большинством. При равенстве голосов побеждает оппозиция.)

Прислать комментарий     Решение

Задача 88297

Темы:   [ Десятичная система счисления ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 4
Классы: 7,8,9

Кащей Бессмертный загадывает три натуральных числа: a, b, c. Иван Царевич должен назвать ему три числа: XYZ, после чего Кащей сообщает ему сумму aX + bY + cZ, затем Иван Царевич говорит еще один набор чисел xyz и Кащей сообщает ему сумму ax + by + cz. Царевич должен отгадать задуманные числа, иначе ему отрубят голову. Какие числа он должен загадать, чтобы остаться в живых?
Прислать комментарий     Решение


Страница: << 123 124 125 126 127 128 129 >> [Всего задач: 644]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .