ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

а) Докажите, что композиция двух центральных симметрий является параллельным переносом.
б) Докажите, что композиция параллельного переноса и центральной симметрии (в обоих порядках) является центральной симметрией.

Вниз   Решение


Квадрат 6×6 нужно заполнить 12 плитками, из которых k имеют форму уголка, а остальные  12 – k  – прямоугольника. При каких k это возможно?

ВверхВниз   Решение


Автор: Храмцов Д.

В какое наибольшее число цветов можно раскрасить все клетки доски размера 10×10 так, чтобы в каждой строке и в каждом столбце находились клетки не более чем пяти различных цветов?

ВверхВниз   Решение


В трапеции точка пересечения диагоналей равноудалена от прямых, на которых лежат боковые стороны. Докажите, что трапеция равнобедренная.

ВверхВниз   Решение


Докажите, что произведение любых пяти последовательных чисел делится   а) на 30;   б) на 120.

ВверхВниз   Решение


Проанализируйте при помощи ним-сумм игру ``Йога'' из задачи 4.21.

ВверхВниз   Решение


На наибольшей стороне AB треугольника ABC взяли такие точки P и Q, что  AQ = AC,  BP = BC.
Докажите, что центр описанной окружности треугольника PQC совпадает с центром вписанной окружности треугольника ABC.

ВверхВниз   Решение


Во всех клетках таблицы 100×100 стоят плюсы. Разрешается одновременно менять знаки во всех клетках одной строки или же во всех клетках одного столбца. Можно ли, пользуясь только этими операциями, получить ровно 1970 минусов?

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 78756  (#М31)

Темы:   [ Свойства частей, полученных при разрезаниях ]
[ Полуинварианты ]
Сложность: 4+
Классы: 8,9,10

Квадратный лист бумаги разрезали по прямой на две части. Одну из полученных частей снова разрезали на две части, и так много раз. Какое наименьшее число разрезов необходимо, чтобы среди полученных частей могло оказаться ровно 100 двадцатиугольников?
Прислать комментарий     Решение


Задача 78755  (#М32)

Темы:   [ Числовые таблицы и их свойства ]
[ Делимость чисел. Общие свойства ]
[ Четность и нечетность ]
[ Процессы и операции ]
Сложность: 4-
Классы: 9,10

Во всех клетках таблицы 100×100 стоят плюсы. Разрешается одновременно менять знаки во всех клетках одной строки или же во всех клетках одного столбца. Можно ли, пользуясь только этими операциями, получить ровно 1970 минусов?

Прислать комментарий     Решение

Задача 78761  (#М33)

Темы:   [ Деление с остатком ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 5-
Классы: 10,11

Имеется натуральное число  n > 1970.  Возьмём остатки от деления числа 2n на 2, 3, 4, ..., n. Доказать, что сумма этих остатков больше 2n.

Прислать комментарий     Решение

Задача 78759  (#М34)

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Метод спуска ]
Сложность: 4
Классы: 8,9,10

Доказать, что если натуральное число k делится на 10101010101, то в его десятичной записи по крайней мере шесть цифр отличны от нуля.

Прислать комментарий     Решение

Задача 78758  (#М35)

Темы:   [ Площадь сферы и ее частей ]
[ Описанные многогранники ]
Сложность: 6-
Классы: 10,11

Около сферы радиуса 10 описан некоторый 19-гранник. Доказать, что на его поверхности найдутся две точки, расстояние между которыми больше 21.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .