ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что в выпуклый центрально-симметричный многоугольник можно поместить ромб вдвое меньшей площади. Все коэффициенты многочлена равны 1, 0 или –1. Точки $A'$, $B'$, $C'$ соответственно симметричны вершинам $A$, $B$, $C$ относительно противоположных сторон треугольника $ABC$. Докажите, что окружности $AB'C'$, $A'BC'$ и $A'B'C$ пересекаются в одной точке. Даны три попарно различные точки на прямой. Сколько существует равнобедренных треугольников, в которых они являются (в каком-нибудь порядке) центрами описанной, вписанной и вневписанной окружностей? Докажите тождество
В остроугольном треугольнике $ABC$ проведены высоты $AH_A$, $BH_B$, $CH_C$. Пусть $X$ – произвольная точка отрезка $CH_C$, а $P$ – точка пересечения окружностей с диаметрами $H_CX$ и $BC$, отличная от $H_C$. Прямые $CP$ и $AH_A$ пересекаются в точке $Q$, а прямые $XP$ и $AB$ – в точке $R$. Докажите, что точки $A$, $P$, $Q$, $R$, $H_B$ лежат на одной окружности. Каково наименьшее число гирь в наборе, который можно разложить и на 4, и на 5, и на 6 кучек равной массы? |
Страница: 1 [Всего задач: 5]
Докажите, что если сумма косинусов углов четырёхугольника равна нулю, то он — параллелограмм, трапеция или вписанный четырёхугольник.
От пирога, имеющего форму выпуклого пятиугольника, можно отрезать треугольный кусок по линии, пересекающей в точках, отличных от вершин, две соседние стороны; от оставшейся части пирога — следующий кусок (таким же образом) и т.д. В какие точки пирога можно воткнуть свечку, чтобы её нельзя было отрезать?
Каково наименьшее число гирь в наборе, который можно разложить и на 4, и на 5, и на 6 кучек равной массы?
Докажите, что в выпуклый центрально-симметричный многоугольник можно поместить ромб вдвое меньшей площади.
Каждая грань выпуклого многогранника – многоугольник с чётным числом
сторон.
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке