ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Даны три попарно различные точки на прямой. Сколько существует равнобедренных треугольников, в которых они являются (в каком-нибудь порядке) центрами описанной, вписанной и вневписанной окружностей? Внутри тетраэдра расположен треугольник, проекции которого на 4 грани тетраэдра имеют площади P1, P2, P3, P4. Докажите, что а) в правильном тетраэдре P1 ≤ P2 + P3 + P4; б) если S1, S2, S3, S4 — площади соответствующих граней тетраэдра, то P1S1 ≤ P2S2 + P3S3 + P4S4. Каждая грань выпуклого многогранника – многоугольник с чётным числом
сторон. На сторонах AB, BC, CD, DA прямоугольника ABCD взяты соответственно точки K, L, M, N, отличные от вершин. Известно, что
KL || MN и p простых чисел a1, a2, ..., ap образуют возрастающую арифметическую прогрессию и a1 > p. Докажите, что в выпуклый центрально-симметричный многоугольник можно поместить ромб вдвое меньшей площади. |
Страница: 1 [Всего задач: 5]
Докажите, что если сумма косинусов углов четырёхугольника равна нулю, то он — параллелограмм, трапеция или вписанный четырёхугольник.
От пирога, имеющего форму выпуклого пятиугольника, можно отрезать треугольный кусок по линии, пересекающей в точках, отличных от вершин, две соседние стороны; от оставшейся части пирога — следующий кусок (таким же образом) и т.д. В какие точки пирога можно воткнуть свечку, чтобы её нельзя было отрезать?
Каково наименьшее число гирь в наборе, который можно разложить и на 4, и на 5, и на 6 кучек равной массы?
Докажите, что в выпуклый центрально-симметричный многоугольник можно поместить ромб вдвое меньшей площади.
Каждая грань выпуклого многогранника – многоугольник с чётным числом
сторон.
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке