ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Василий Петров выполняет задание по английскому языку. В этом задании есть 10 английских выражений и их переводы на русский в случайном порядке. Нужно установить верные соответствия между выражениями и их переводами. За каждое правильно установленное соответствие даётся 1 балл. Таким образом, можно получить от 0 до 10 баллов. Вася ничего не знает, поэтому выбирает варианты наугад. Найдите вероятность того, что он получит ровно 9 баллов. Постройте треугольник ABC по стороне a, высоте ha и
углу A.
Основание равнобедренного треугольника составляет четверть его периметра. Из произвольной точки основания проведены прямые, параллельные боковым сторонам. Во сколько раз периметр треугольника больше периметра отсечённого параллелограмма? Определить коэффициенты, которые будут стоять при x17 и x18 после раскрытия скобок и приведения подобных членов в выражении (1 + x5 + x7)20. Постройте равносторонний треугольник ABC так,
чтобы его вершины лежали на трех данных параллельных прямых.
На окружности с центром O даны точки
A1,..., An,
делящие ее на равные дуги, и точка X. Докажите, что
точки, симметричные X относительно прямых
OA1,..., OAn,
образуют правильный многоугольник.
Докажите, что при повороте x'' = x'cosφ + y'sinφ, y'' = - x'sinφ + y'cosφ выражение ax'2 + 2bx'y' + cy'2 переходит в a1x'2 + 2b1x''y'' + c1y'2, причём a1c1 - b12 = ac - b2. Пусть O — центр вписанной окружности треугольника ABC,
D — точка касания ее со стороной AC, B1 — середина
стороны AC. Докажите, что прямая B1O делит
отрезок BD пополам.
В вершинах n-угольника стоят числа 1 и –1. На каждой стороне написано произведение чисел на её концах. Оказалось, что сумма чисел на сторонах равна нулю. Доказать, что a) n чётно; б) n делится на 4. а) На столе лежит 21 монета решкой вверх. За одну операцию разрешается перевернуть любые 20 монет. Можно ли за несколько операций добиться, чтобы все монеты легли орлом вверх? Доказать, что если многоугольник имеет несколько осей симметрии, то все они пересекаются в одной точке. Существует ли 2005 таких различных натуральных чисел, что сумма любых 2004 из них делится на оставшееся число? |
Страница: 1 2 >> [Всего задач: 6]
Дискриминанты трёх приведённых квадратных трёхчленов равны 1, 4 и 9.
Существует ли 2005 таких различных натуральных чисел, что сумма любых 2004 из них делится на оставшееся число?
Окружность Ω1 проходит через центр окружности Ω2. Из точки C, лежащей на Ω1, проведены касательные к Ω2, вторично пересекающие Ω1 в точках A и B. Докажите, что отрезок AB перпендикулярен линии центров окружностей.
Верно ли, что любой треугольник можно разрезать на 1000 частей, из которых можно сложить квадрат?
На окружности расставлено n цифр, отличных от 0. Сеня и Женя переписали себе в тетрадки n – 1 цифру, читая их по часовой стрелке. Оказалось, что хотя они начали с разных мест, записанные ими (n–1)-значные числа совпали. Докажите, что окружность можно разрезать на несколько дуг так, чтобы записанные на дугах цифры образовывали одинаковые числа.
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке