ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи K членов Жюри Десятой Всероссийской олимпиады школьников по информатике решили отметить столь круглую годовщину в одном из лучших ресторанов на Невском проспекте. На десерт вниманию Жюри предложили торт, имеющий форму прямоугольной призмы с выпуклым N-угольником в основании. Жюри вооружается десертными ножами и собирается справедливо разделить торт на K частей равного объема. Ножами можно проводить прямые вертикальные разрезы от одной границы торта до другой; различные разрезы могут иметь общие точки лишь в своих концевых вершинах. Напишите программу, помогающую членам Жюри построить требуемые
K-1 разрезов.
В прямоугольнике площадью 5 кв. единиц расположены девять прямоугольников, площадь каждого из которых равна единице. Докажите, что площадь общей части некоторых двух прямоугольников больше или равна 1/9. На клетчатом листе нарисован прямоугольник 6×7. Разрежьте его по линиям сетки на пять каких-нибудь квадратов. Конструктор состоит из плиток размерами 1 × 3 и 1 × 4. Из всех имеющихся плиток Федя сложил два прямоугольника размерами 2 × 6 и 7 × 8. Его брат Антон утащил по одной плитке из каждого сложенного прямоугольника. Сможет ли Федя из оставшихся плиток собрать прямоугольник размером 12 × 5? В плоскости расположено 11 шестерёнок таким образом, что первая сцеплена со второй, вторая – с третьей, ..., одиннадцатая – с первой. Имеется 120-значное число. Его первые 12 цифр переставляются всеми возможными способами. Из полученных таким образом 120-значных чисел наугад выбирают 120 чисел. Доказать, что их сумма делится на 120.
В основании прямой призмы лежит прямоугольный треугольник с катетами 1 и 10 . Боковые ребра равны Сырок стоит 7 руб. 20 коп. Какое наибольшее число сырков можно купить на 60 рублей? Число Назовем натуральное число "замечательным", если оно самое маленькое среди натуральных чисел с такой же, как у него, суммой цифр. Чему равна сумма цифр две тысячи первого замечательного числа? |
Страница: 1 2 >> [Всего задач: 8]
Пусть S(x) – сумма цифр натурального числа x. Решите уравнение x + S(x) = 2001.
Существуют ли шесть таких последовательных натуральных чисел, что наименьшее общее кратное первых трёх из них больше, чем наименьшее общее кратное трёх следующих?
Назовем натуральное число "замечательным", если оно самое маленькое среди натуральных чисел с такой же, как у него, суммой цифр. Чему равна сумма цифр две тысячи первого замечательного числа?
Докажите, что ½ – ⅓ + ¼ – ⅕ + ... + 1/98 – 1/99 + 1/100 > ⅕.
В клетках шахматной доски записаны в произвольном порядке натуральные числа от 1 до 64 (в каждой клетке записано ровно одно число и каждое число записано ровно один раз). Может ли в ходе шахматной партии сложиться ситуация, когда сумма чисел, записанных в клетках, занятых фигурами, ровно вдвое меньше суммы чисел, записанных в клетках, свободных от фигур?
Страница: 1 2 >> [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке