Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Вписанная окружность касается стороны BC треугольника ABC в точке K. Докажите, что площадь треугольника равна  BK . KCctg($ \alpha$/2).

Вниз   Решение


ABC - прямоугольный треугольник с прямым углом C. Докажите, что  c/r $ \geq$ 2(1 + $ \sqrt{2}$).

ВверхВниз   Решение


Квадратный трехчлен  y = ax² + bx + c  не имеет корней и  а + b + c > 0.  Найдите знак коэффициента с.

ВверхВниз   Решение


Даны четыре окружности S1, S2, S3, S4. Пусть S1 и S2 пересекаются в точках A1 и A2, S2 и S3 — в точках B1 и B2, S3 и S4 — в точках C1 и C2, S4 и S1 — в точках D1 и D2 (рис.). Докажите, что если точки A1, B1, C1, D1 лежат на одной окружности S (или прямой), то и точки A2, B2, C2, D2 лежат на одной окружности (или прямой).


ВверхВниз   Решение


Докажите, что

\begin{multline*}
h_a=2(p-a)\cos(\beta /2)\cos(\gamma /2)/\cos(\alpha /2)=\\
=2(p-b)\sin(\beta /2)\cos(\gamma /2)/\sin(\alpha /2).
\end{multline*}


ВверхВниз   Решение


Дано число: 123456789101112... . Какая цифра стоит на 2000-м месте?

ВверхВниз   Решение


Докажите, что для прямоугольного треугольника 0, 4 < r/h < 0, 5, где h — высота, опущенная из вершины прямого угла.

ВверхВниз   Решение


Пусть $ \left(\vphantom{\frac{P(t)}{A(t)},\frac{Q(t)}{A(t)}}\right.$$ {\frac{P(t)}{A(t)}}$,$ {\frac{Q(t)}{A(t)}}$$ \left.\vphantom{\frac{P(t)}{A(t)},\frac{Q(t)}{A(t)}}\right)$ — рациональная параметризация коники, построенная при решении задачи 31.071. Докажите, что степень каждого из многочленов A, P, Q не превосходит 2.

ВверхВниз   Решение


Постройте с помощью одного циркуля точку, симметричную точке A относительно прямой, проходящей через данные точки B и C.

ВверхВниз   Решение


Пусть точки A, B, C и D лежат на конике, заданной уравнением второй степени f = 0. Докажите, что

f = $\displaystyle \lambda$lABlCD + $\displaystyle \mu$lBClAD,

где $ \lambda$ и $ \mu$ — некоторые числа.

ВверхВниз   Решение


На биссектрисе внешнего угла C треугольника ABC взята точка M, отличная от C. Докажите, что MA + MB > CA + CB.

ВверхВниз   Решение


Точка $X$ расположена внутри параллелограмма $ABCD$. Докажите, что $S_{ABX}+S_{CDX}=S_{BCX}+S_{ADX}$.

ВверхВниз   Решение


Докажите, что   ½ – ⅓ + ¼ – ⅕ + ... + 1/981/99 + 1/100 > ⅕.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 86484  (#1.1)

Темы:   [ Системы линейных уравнений ]
[ Методы решения задач с параметром ]
Сложность: 2+
Классы: 7,8,9

При каких значениях m уравнения  mx – 1000 = 1001  и  1001x = m – 1000x  имеют общий корень?

Прислать комментарий     Решение

Задача 86485  (#1.2)

Темы:   [ Наглядная геометрия в пространстве ]
[ Боковая поверхность параллелепипеда ]
Сложность: 2
Классы: 7,8

Куб сложен из 27 одинаковых кубиков (см. рис.). Сравните площадь поверхности этого куба и площадь поверхности фигуры, которая получится, если из него вынуть все "угловые" кубики.

Прислать комментарий     Решение

Задача 86486  (#1.3)

Темы:   [ Десятичная система счисления ]
[ Задачи-шутки ]
Сложность: 2+
Классы: 7,8

Назовем натуральное число "замечательным", если оно самое маленькое среди натуральных чисел с такой же, как у него, суммой цифр. Чему равна сумма цифр две тысячи первого замечательного числа?
Прислать комментарий     Решение


Задача 86487  (#2.1)

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Обыкновенные дроби ]
[ Разбиения на пары и группы; биекции ]
Сложность: 2+
Классы: 7,8

Докажите, что   ½ – ⅓ + ¼ – ⅕ + ... + 1/981/99 + 1/100 > ⅕.

Прислать комментарий     Решение

Задача 86488  (#2.2)

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
Сложность: 2+
Классы: 7,8

Через вершины А и С треугольника АВС проведены прямые, перпендикулярные биссектрисе угла АВС. Они пересекают прямые СВ и ВА в точках К и М соответственно. Найдите длину АВ, если  ВМ = 8 см,  KC = 1 см  и  АВ > ВС.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .