ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Книги/журналы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Три офиса A, B и C одной фирмы расположены в вершинах треугольника. В офисе A работают 10 человек, в офисе B - 20, а в офисе C - 30. Где нужно построить столовую, чтобы суммарное расстояние, проходимое всеми сотрудниками фирмы, было бы как можно меньше? Может ли число, записываемое при помощи 100 нулей, 100 единиц и 100 двоек, быть точным квадратом? На трех гранях куба провели диагонали так, что получился треугольник. Найти углы этого треугольника. В обращении есть монеты достоинством в 1, 2, 5, 10, 20, 50 копеек и 1 рубль. Известно, что k монетами можно набрать m копеек. Игровое поле представляет собой горизонтальную полоску размером 1×100 клеток. В самой левой клетке стоит фишка. Двое по очереди двигают фишку вправо, причём за один ход разрешается сдвинуть фишку вправо на расстояние от 1 до 10 клеток. Проигрывает тот, кто не может сделать ход (то есть перед его ходом фишка находится в самой правой клетке). Кто выиграет при правильной игре? В пассажирском поезде 17 вагонов. Все натуральные числа, начиная с единицы, записаны в порядке возрастания 1234567891011121314…… . Какая цифра стоит на сотом месте, а какая на тысячном? На рыбалке. Четыре друга пришли с рыбалки. Каждые двое сосчитали суммы своих уловов. Получилось шесть чисел: 7, 9, 14, 14, 19, 21. Сможете ли Вы узнать, каковы были уловы? Обратите внимание, что значение 1!·1 + 2!·2 + 3!·3 + ... + n!·n равно 1, 5, 23, 119 для n = 1, 2, 3, 4 соответственно. Можно ли нарисовать девятизвенную замкнутую ломаную, каждое звено которой пересекается ровно с одним из остальных звеньев? Пусть ABCD – выпуклый четырехугольник. Докажите, что AB + CD < AC + BD. Можно ли в таблице 6*6 расставить числа 0,1,-1 так, чтобы все суммы по вертикалям, горизонталям и двум главным диагоналям были различны. Сколькими способами, двигаясь по следующей таблице от буквы к букве,
Можно ли испечь такой торт, который может быть разделён одним прямолинейным разрезом на 4 части? |
Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 4556]
Дедка вдвое сильнее Бабки, Бабка втрое сильнее Внучки, Внучка вчетверо сильнее Жучки, Жучка впятеро сильнее Кошки, Кошка вшестеро сильнее Мышки. Дедка, Бабка, Внучка, Жучка и Кошка вместе с Мышкой могут вытащить Репку, а без Мышки — не могут. Сколько надо позвать Мышек, чтобы они смогли сами вытащить Репку?
Можно ли в тетрадном листке вырезать такую дырку, через которую пролез бы человек?
Три купчихи – Сосипатра Титовна, Олимпиада Карповна и Поликсена Уваровна – сели пить чай. Олимпиада Карповна и Сосипатра Титовна выпили вдвоём 11 чашек, Поликсена Уваровна и Олимпиада Карповна – 15, а Сосипатра Титовна и Поликсена Уваровна – 14. Сколько чашек чая выпили все три купчихи вместе?
Как разделить блинчик тремя прямолинейными разрезами на 4, 5, 6, 7 частей?
Можно ли испечь такой торт, который может быть разделён одним прямолинейным разрезом на 4 части?
Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 4556]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке