Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Три офиса A, B и C одной фирмы расположены в вершинах треугольника. В офисе A работают 10 человек, в офисе B - 20, а в офисе C - 30. Где нужно построить столовую, чтобы суммарное расстояние, проходимое всеми сотрудниками фирмы, было бы как можно меньше?

Вниз   Решение


Может ли число, записываемое при помощи 100 нулей, 100 единиц и 100 двоек, быть точным квадратом?

ВверхВниз   Решение


На трех гранях куба провели диагонали так, что получился треугольник. Найти углы этого треугольника.

ВверхВниз   Решение


В обращении есть монеты достоинством в 1, 2, 5, 10, 20, 50 копеек и 1 рубль. Известно, что k монетами можно набрать m копеек.
Докажите, что m монетами можно набрать k рублей.

ВверхВниз   Решение


Игровое поле представляет собой горизонтальную полоску размером 1×100 клеток. В самой левой клетке стоит фишка. Двое по очереди двигают фишку вправо, причём за один ход разрешается сдвинуть фишку вправо на расстояние от 1 до 10 клеток. Проигрывает тот, кто не может сделать ход (то есть перед его ходом фишка находится в самой правой клетке). Кто выиграет при правильной игре?

ВверхВниз   Решение


В пассажирском поезде 17 вагонов.
Сколькими способами можно распределить по вагонам 17 проводников, если за каждым вагоном закрепляется один проводник?

ВверхВниз   Решение


Все натуральные числа, начиная с единицы, записаны в порядке возрастания 1234567891011121314…… . Какая цифра стоит на сотом месте, а какая на тысячном?

ВверхВниз   Решение


На рыбалке. Четыре друга пришли с рыбалки. Каждые двое сосчитали суммы своих уловов. Получилось шесть чисел: 7, 9, 14, 14, 19, 21. Сможете ли Вы узнать, каковы были уловы?

ВверхВниз   Решение


Обратите внимание, что значение  1!·1 + 2!·2 + 3!·3 + ... + n!·n  равно 1, 5, 23, 119 для  n = 1, 2, 3, 4  соответственно.
Установите общий закон и докажите его.

ВверхВниз   Решение


Можно ли нарисовать девятизвенную замкнутую ломаную, каждое звено которой пересекается ровно с одним из остальных звеньев?

ВверхВниз   Решение


Пусть ABCD – выпуклый четырехугольник. Докажите, что  AB + CD < AC + BD.

ВверхВниз   Решение


Можно ли в таблице 6*6 расставить числа 0,1,-1 так, чтобы все суммы по вертикалям, горизонталям и двум главным диагоналям были различны.

ВверхВниз   Решение


Сколькими способами, двигаясь по следующей таблице от буквы к букве,

            к            
          в   в          
        а   а   а        
      д   д   д   д      
    р   р   р   р   р    
  а   а   а   а   а   а  
т   т   т   т   т   т   т
можно прочитать слово "квадрат"?

ВверхВниз   Решение


Можно ли испечь такой торт, который может быть разделён одним прямолинейным разрезом на 4 части?

Вверх   Решение

Задачи

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 4556]      



Задача 87936

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Обратный ход ]
Сложность: 2
Классы: 5,6,7

Дедка вдвое сильнее Бабки, Бабка втрое сильнее Внучки, Внучка вчетверо сильнее Жучки, Жучка впятеро сильнее Кошки, Кошка вшестеро сильнее Мышки. Дедка, Бабка, Внучка, Жучка и Кошка вместе с Мышкой могут вытащить Репку, а без Мышки  — не могут. Сколько надо позвать Мышек, чтобы они смогли сами вытащить Репку?
Прислать комментарий     Решение


Задача 87939

Темы:   [ Необычные конструкции ]
[ Геометрия на клетчатой бумаге ]
Сложность: 2
Классы: 5,6,7

Можно ли в тетрадном листке вырезать такую дырку, через которую пролез бы человек?
Прислать комментарий     Решение


Задача 87940

Темы:   [ Подсчет двумя способами ]
[ Задачи на работу ]
Сложность: 2
Классы: 5,6,7

Три купчихи – Сосипатра Титовна, Олимпиада Карповна и Поликсена Уваровна – сели пить чай. Олимпиада Карповна и Сосипатра Титовна выпили вдвоём 11 чашек, Поликсена Уваровна и Олимпиада Карповна – 15, а Сосипатра Титовна и Поликсена Уваровна – 14. Сколько чашек чая выпили все три купчихи вместе?

Прислать комментарий     Решение

Задача 87951

Тема:   [ Разрезания (прочее) ]
Сложность: 2
Классы: 5,6,7

Как разделить блинчик тремя прямолинейными разрезами на 4, 5, 6, 7 частей?
Прислать комментарий     Решение


Задача 87953

Тема:   [ Разные задачи на разрезания ]
Сложность: 2
Классы: 5,6,7

Можно ли испечь такой торт, который может быть разделён одним прямолинейным разрезом на 4 части?
Прислать комментарий     Решение


Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 4556]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .