Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Дано натуральное число $n > 1$. Назовём положительную обыкновенную дробь (не обязательно несократимую) хорошей, если сумма её числителя и знаменателя равна $n$. Докажите, что любую положительную обыкновенную дробь, знаменатель которой меньше $n$, можно выразить через хорошие дроби (не обязательно различные) с помощью операций сложения и вычитания тогда и только тогда, когда $n$ — простое число.

Напомним, что обыкновенная дробь — это отношение целого числа к натуральному.

Вниз   Решение


Можно ли записать в строку 20 чисел так, чтобы сумма любых трёх последовательных чисел была положительна, а сумма всех 20 чисел была отрицательна?

ВверхВниз   Решение


Дан отрезок AB. Найдите на плоскости множество таких точек C, что медиана треугольника ABC, проведённая из вершины A, равна высоте, проведённой из вершины B.

ВверхВниз   Решение


Автор: Анджанс А.

Числа 1, 2, 3, ..., N записываются в строчку в таком порядке, что если где-то (не на первом месте) записано число i, то где-то слева от него встретится хотя бы одно из чисел  i + 1  и  i – 1.  Сколькими способами это можно сделать?

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 97946  (#М1157)

Темы:   [ Наименьший или наибольший угол ]
[ Выпуклые и невыпуклые фигуры (прочее) ]
Сложность: 4
Классы: 8,9

Три треугольника – белый, зелёный и красный – имеют общую внутреннюю точку M. Докажите, что можно выбрать по одной вершине из каждого треугольника так, чтобы точка M находилась внутри или на границе треугольника, образуемого выбранными вершинами.

Прислать комментарий     Решение

Задача 97992  (#М1166)

Темы:   [ Алгебраические задачи на неравенство треугольника ]
[ Выделение полного квадрата. Суммы квадратов ]
[ Тождественные преобразования ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9,10

Докажите, что  a²pq + b²qr + c²rp ≤ 0,  если a, b, c – стороны треугольника; а p, q, r – любые числа, удовлетворяющие условию  p + q + r = 0.

Прислать комментарий     Решение

Задача 97993  (#М1167)

Темы:   [ Перестановки и подстановки ]
[ Отношение порядка ]
[ Правило произведения ]
Сложность: 4-
Классы: 8,9,10

Автор: Анджанс А.

Числа 1, 2, 3, ..., N записываются в строчку в таком порядке, что если где-то (не на первом месте) записано число i, то где-то слева от него встретится хотя бы одно из чисел  i + 1  и  i – 1.  Сколькими способами это можно сделать?

Прислать комментарий     Решение

Задача 97994  (#М1168)

Темы:   [ Обход графов ]
[ Классическая комбинаторика (прочее) ]
[ Подсчет двумя способами ]
Сложность: 4
Классы: 9,10

В стране 1988 городов и 4000 дорог.
Докажите, что можно указать кольцевой маршрут, проходящий не более, чем через 20 городов (каждая дорога соединяет два города).

Прислать комментарий     Решение

Задача 108032  (#М1169)

Темы:   [ Перегруппировка площадей ]
[ Перенос помогает решить задачу ]
[ Площадь четырехугольника ]
[ Площадь треугольника не превосходит половины произведения двух сторон ]
[ Четырехугольник (неравенства) ]
Сложность: 4-
Классы: 8,9

Пусть M – внутренняя точка прямоугольника ABCD, а S – его площадь. Докажите, что S ≤ AM·CM + BM·DM.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .